期刊文献+

基于自适应混沌变异的k-均值聚类粒子群算法 被引量:1

k-Mean Cluster Particle Swarm Optimization Algorithm Based on Self-adaptive Chaotic Mutation
下载PDF
导出
摘要 针对经典粒子群(PSO)算法易出现早熟收敛和搜索精度差的缺陷,提出了一种基于混沌变异的k-均值聚类PSO优化算法(FCPSO)。该算法首先通过k-均值聚类方法把粒子群分成若干个子群体,从而在迭代过程中每个粒子根据其个体极值和所在子种群中的全局极值来更新自己的位置和速度。其次,在算法中引入自适应混沌变异,有效的增强了子群体之间信息交换和经典PSO算法跳出局部最优解的能力。对几个典型可变维函数的测试结果表明,该算法是非常有效的。 A new k-mean cluster particle swarm algorithm (FCPSO) based on self-adaptive chaotic mutatiori is presented to overcome the default of the premature and low precision of the standard PSO algorithm. First, the particle swarm is divided into several sub-swarms by the k-mean cluster. Then, the current particles are dynamically updated by the personal best particle and global best particles in the sub-swarms. Second, by the self-adaptive chaotic mutation operator introduced to the algorithm, the information exchanged between different sub-swarms and the ability of standard PSO algorithm is break away from the local optimum are effectively improved. The computer simulations demonstrate the effectiveness of the proposed algorithm.
出处 《科学技术与工程》 2009年第5期1150-1154,共5页 Science Technology and Engineering
基金 陕西省自然科学基础研究计划项目(2006A12) 宝鸡文理学院重点科研项目(ZK0619)资助
关键词 PSO算法 K-均值聚类 混沌变异 信息交换 PSO algorithm k-mean cluster chaotic mutation information exchanged
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R.Particle swarm optimization.IEEE International of first Conference on Neural Networks,Perth,Australia,IEEE Press,1995;167-171 被引量:1
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory.In:Proceeding of the 6th International of first Symposium on Micro Machine and Human Science.Piscataway NJ:IEEE Press,1995:39-43 被引量:1
  • 3Shi Y,Eberhart R.Particle swarm optimization:developments,applications and resource.In:Proceeding Congress on Evolutionary Computation,2001,NJ:Piscataway,IEEE Press,2001:81-86 被引量:1
  • 4Kennedy J,Mendes R.Population structure and particle swarm performance.In:Proceeding 2002 World Congress Computational Intelligence,Honolulu,HI,Springer-Verlag,2002:1671-1676 被引量:1
  • 5贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 6袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 7Liu B,Wang L,Jin Y H,et al.Improved particle swarm optimization combined with chaos.Chaos,Solitons and Fractals,2005;25(5):1261-1271 被引量:1

二级参考文献23

共引文献96

同被引文献20

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部