摘要
Objective To reveal the effects and related mechanisms of chlorogenic acid(CGA)on intestinal glucose homeostasis.Methods Forty male Sprague-Dawley rats were randomly and equally divided into four groups:normal chow(NC),high-fat diet(HFD),HFD with low-dose CGA(20 mg/kg,HFD-LC),and HFD with high-dose CGA(90 mg/kg,HFD-HC).The oral glucose tolerance test was performed,and fast serum insulin(FSI)was detected using an enzyme-linked immunosorbent assay.The m RNA expression levels of glucose transporters(Sglt-1 and Glut-2)and proglucagon(Plg)in different intestinal segments(the duodenum,jejunum,ileum,and colon)were analyzed using quantitative real-time polymerase chain reaction.SGLT-1 protein and the morphology of epithelial cells in the duodenum and jejunum was localized by using immunofluorescence.Results At both doses,CGA ameliorated the HFD-induced body weight gain,maintained FSI,and increased postprandial 30-min glucagon-like peptide 1 secretion.High-dose CGA inhibited the HFD-induced elevation in Sglt-1 expression.Both CGA doses normalized the HFD-induced downregulation of Glut-2 and elevated the expression of Plg in all four intestinal segments.Conclusion An HFD can cause a glucose metabolism disorder in the rat intestine and affect body glucose homeostasis.CGA can modify intestinal glucose metabolism by regulating the expression of intestinal glucose transporters and Plg,thereby controlling the levels of blood glucose and insulin to maintain glucose homeostasis.
Objective To reveal the effects and related mechanisms of chlorogenic acid(CGA)on intestinal glucose homeostasis.Methods Forty male Sprague-Dawley rats were randomly and equally divided into four groups:normal chow(NC),high-fat diet(HFD),HFD with low-dose CGA(20 mg/kg,HFD-LC),and HFD with high-dose CGA(90 mg/kg,HFD-HC).The oral glucose tolerance test was performed,and fast serum insulin(FSI)was detected using an enzyme-linked immunosorbent assay.The m RNA expression levels of glucose transporters(Sglt-1 and Glut-2)and proglucagon(Plg)in different intestinal segments(the duodenum,jejunum,ileum,and colon)were analyzed using quantitative real-time polymerase chain reaction.SGLT-1 protein and the morphology of epithelial cells in the duodenum and jejunum was localized by using immunofluorescence.Results At both doses,CGA ameliorated the HFD-induced body weight gain,maintained FSI,and increased postprandial 30-min glucagon-like peptide 1 secretion.High-dose CGA inhibited the HFD-induced elevation in Sglt-1 expression.Both CGA doses normalized the HFD-induced downregulation of Glut-2 and elevated the expression of Plg in all four intestinal segments.Conclusion An HFD can cause a glucose metabolism disorder in the rat intestine and affect body glucose homeostasis.CGA can modify intestinal glucose metabolism by regulating the expression of intestinal glucose transporters and Plg,thereby controlling the levels of blood glucose and insulin to maintain glucose homeostasis.
基金
supported by the National Natural Science foundation of China(No.31071531)
the Scientific Research Fund of the Hunan Provincial Education Department(No.14A071)
the China National Tobacco Corp Hunan Branch(15-17Aa04)