期刊文献+

基于深度神经网络的汽车车型识别 被引量:10

The Depth of Vehicle Recognition Based on Neural Network
下载PDF
导出
摘要 研究基于深度学习的车型自动识别技术,运用深度神经网络对在各个角度下拍摄的具有复杂背景的汽车图像进行网络训练,从而达到车辆车型的自动识别的目的。采用先进的深度学习框架Caffe和具有强大计算能力的GPU,使用深度神经网络VGG16和Alex Net,分别对汽车图像进行网络训练与测试,并通过与传统的分类算法,K最近邻进行对比研究。实验显示,VGG16网络模型准确率高达97.58%,在汽车车型识别问题上具有很大优势。 Studies the recognition of vehicle types based on deep learning methods. Deep neural network is trained to classify automobile images which are shot from different angles with complex background. Uses the cutting-edge Deep Learning architecture, Caffe and a powerful computational platform, GPU. VGG16 network and Alex Net network are trained and tested for this task respectively. Moreover, applies the classical algorithm, K-Nearest Neighbor for comparison. The result suggests that VGG16 network outperform other methods by a big margin with the accuracy of 97.58%.
作者 王茜 张海仙
出处 《现代计算机(中旬刊)》 2015年第12期61-64,共4页 Modern Computer
基金 四川省科技计划项目(No.2014GZ0005-5)
关键词 深度学习 车型识别 卷积神经网络 Deep Learning Vehicle Recognition Convolutional Neural Network
  • 相关文献

参考文献4

  • 1Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm For Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554. 被引量:1
  • 2Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural In- formation Processing Systems, 2012, 25:2012. 被引量:1
  • 3Simonyan K, Zisserman A, Simonyan K, et al. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Eprint Arxiv, 2014. 被引量:1
  • 4K.P Soman, Shyam Diwakar, V.Ajay. Insight into Data Mining Theory and Practice. China Machine Press. 被引量:1

同被引文献42

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部