期刊文献+

一种基于Adaboost.M1的车型分类算法 被引量:2

A Vehicle Classification Algorithm Based on Adaboost.M1
下载PDF
导出
摘要 神经网络分类器存在容易出现过学习、欠学习、陷入维数灾以及局部最小等问题,支持向量机分类器也存在运算比较复杂,模型选择和核函数的构造比较困难的问题,而贝叶斯分类器只有在训练样本数趋于无穷时,训练结果才趋于真实的模型,因此,提出了一种基于Adaboost.M1理论的车型分类算法,该算法简单易用,只需要寻找一个精度比随机预测略高的弱分类器,不需要调节任何参数,不需要先验知识,而且有足够的理论支持.最后通过实验验证了该算法进行车型分类的有效性. Neural network classifiers have problems of over learning,less learning,fall into curse of dimensionality or local minimum,and support vector machine classifiers also have problems of more complex operations,model selection and construction of kernel function is more difficult,and Bayesian classification only in the number of training samples tends to infinity,the training results of the model tends to true.This paper presents a vehicle classification algorithm based on Adaboost.M1.The algorithm is simple to use,and just need to find a weak classifier which′s precision slightly higher than the random prediction,without adjusting any parameters,no prior knowledge,and there is sufficient theoretical support.Finally,experimental results demonstrate the effectiveness of the vehicle classification algorithm based on Adaboost.M1.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第6期201-204,208,共5页 Microelectronics & Computer
基金 广东省工业科技攻关计划项目"基于视频检测的关联交叉口群智能控制系统的研究与实现"(#2005A10101001)
关键词 Adaboost.M1 车型分类 弱分类器 Adaboost.M1 vehicle classification weak classifier
  • 相关文献

参考文献12

  • 1Goyal A, Verma B. A neural network based approach for the vehicle classification[C]// IEEE Symposium on Computational Intelligence in Image and Signal Process-ing, IEEE, 2007 : 226-231. 被引量:1
  • 2Xiaobin L, Hui F, Jianmin X. Automatic vehicle classi- fication based on video with BP neural networks[C]// 4th International Conference on Wireless Communica- tions, Networking and Mobile Computing. Dalian, 2008 : 1- 3. 被引量:1
  • 3Thi T H, Robert K, Lu S, et al. Vehicle classification at nighttime using eigenspaces and support vector ma- ehine[C]// Congress on Image and Signal Processing. Sanya, 2008:422-426. 被引量:1
  • 4曹洁,李浩茹,陈继开.基于支持向量机的车型分类的设计[J].科学技术与工程,2007,7(22):5962-5965. 被引量:5
  • 5葛广英.基于SVM的车型检测和识别算法[J].计算机工程,2007,33(6):6-8. 被引量:15
  • 6Judea Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach [C]// Proceedings AAAI National Conference on AI. Pittsburgh, Pa, 1982:133-136. 被引量:1
  • 7Kearns M, Valiant L G. Cryptographic limitations on learning boolean formulae and finite automata[J]. Jour- nal of the ACM, 1994, 41(1), 67-95. 被引量:1
  • 8Freund Y, Schapire R E. A decision--theoretic general- ization of the on- line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1) :119-139. 被引量:1
  • 9Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and vari- ants[J]. Machine Learning, 1999, 36(1/2): 105-139. 被引量:1
  • 10Schapire R E, Freund Y, Bartlett P, Lee W S. Boos- ting the Margin: A new Explanation for the Effective- ness of Voting Methods[J]. The Annals of Statistics, 1998, 26(5) :1651-1686. 被引量:1

二级参考文献9

  • 1[4]Suarez A,Lutsko J F.Globally optimal fuzzy decision tree for classification and regression.IEEE Transaction on Pattern Analysis and Machine Intelligence.1999 ;21 (12):1297-1311 被引量:1
  • 2[5]Tax D M J,Breukelen M,Duin R P W,et al.Combining multiple classifiers by a averaging or by multiplying.Pattern Recogniton,2000 ;33:1475-1485 被引量:1
  • 3Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995. 被引量:1
  • 4Collins R,Lipton A,Kanada T,et al.A System for Video Surveillance and Monitoring[R].Pittsburgh:Robotics Institute,Carnegie Mellon University,2000. 被引量:1
  • 5Cucchiara R,Grana C,Piccardi M.Improving Shadow Suppression in Moving Object Detection with HSV Color Information[C]//Proc.of IEEE Int'l Conference on Intelligent Transportation Systems.2001:334-339. 被引量:1
  • 6Platt J C.Fast Training of Support Vector Machine Using Sequential Minimal Optimization[M].Cambridge,MA:MIT Press,1999:185-208. 被引量:1
  • 7Sebald D J,Buchlew J A.Support Vector Machines and the Multiple Hypothesis Test Problem[J].IEEE Trans.on Signal Processing,2001,11(49):2865-2872. 被引量:1
  • 8Chapelle O,Vapnik V,Bacsquest O,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning,2002,46(1):131-159. 被引量:1
  • 9杨杰,郭伟.基于图像处理的车型自动识别及应用研究[J].交通与计算机,2001,19(3):30-32. 被引量:7

共引文献18

同被引文献20

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部