期刊文献+

MapReduce性能预测模型构建 被引量:1

Performance Prediction Model Construction of MapReduce
下载PDF
导出
摘要 MapReduce是目前大数据处理中应用最广泛的云计算模型,预测其性能有利于提高云计算的效率。然而MapReduce运行需要依赖大量的配置参数,这些参数会对MapReduce性能产生较大的影响。传统的MapReduce模型的配置参数的预测方法都是基于管理员经验的定性分析,无法准确预测MapReduce模型运行时间。为更好地对MapReduce性能进行预测,利用数学分析中的多元线性回归方法,在分析现有的影响MapReduce性能的配置参数的基础上,构建了MapReduce性能和其配置参数之间的多元线性回归模型。为了验证该方法的正确性,以两个最重要的配置参数Map和Reduce数量为例进行了算例验证。实验结果表明,多元线性回归模型可以用来预测MapReduce性能。 M apReduce is the most popular cloud computing model in big data processing. Predicting the performance of M apReduce could be used to increase the cloud computing efficiency. However,M apReduce runs based on a huge number of configuration parameters which would affect the performance. Traditional predicting of configuration is based on the experience of administrator,and this approach is of lowaccuracy. In order to give a better prediction of M apReduce performance,a multiple linear regression model based on the configuration parameters was proposed. With the aim to verify the model,an experiment was carried out taking the M ap number and Reduce number as an example. The experiments results indicate that the proposed model can be used in predicting the M apReduce performance.
出处 《计算机技术与发展》 2016年第1期70-73,共4页 Computer Technology and Development
基金 总装备部预研项目(513150701)
关键词 MAPREDUCE 云计算模型 性能预测 多元线性回归模型 MapReduce cloud computing model performance prediction multiple linear regression model
  • 相关文献

参考文献14

  • 1Dean J G S. MapReduce: simplified data processing on large clusters[ J]. Communications of the ACM ,2008,51 ( 1 ) : 107- 113. 被引量:1
  • 2丁琳琳,信俊昌,王国仁,黄山.基于Map-Reduce的海量数据高效Skyline查询处理[J].计算机学报,2011,34(10):1785-1796. 被引量:44
  • 3覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32-45. 被引量:386
  • 4Jahani E, Cafarella M J, R6 C. Automatic optimization for Ma- pReduce programs [ J 1- Proceedings of the VLDB Endowment, 2011,4 (6) :385-396. 被引量:1
  • 5Vianna E, Comarela G, Pontes T, et al. Analytical performance models for MapReduce workloads[ J]. International Journal of Parallel Programrning,2013,41 (4) :495-525. 被引量:1
  • 6Babu S. Towards automatic optimization of MapReduce pro- grams[ C ]//Proceedings of the 1 st ACM symposium on cloud computing. [ s. 1. ] : ACM ,2010 : 137-142. 被引量:1
  • 7Jiang D, Ooi B C, Shi L, et al. The performance of MapRe- duce : an in- depth study [ J ]. Proceedings of the VLDB En- dowment,2010,3 ( 1-2 ) :472-483. 被引量:1
  • 8李奇原,刘杰,叶丹,许舒人.FlowS:一种MapReduce数据流公平调度方法[J].计算机科学,2012,39(9):157-161. 被引量:4
  • 9Lama P,Zhou X. Aroma: automated resource allocation and configuration of MapReduce environment in the cloud [ C ]// Proceedings of the 9th international conference on autonomic computing. Is. 1. ]:Is. n. ] ,2012:63-72. 被引量:1
  • 10辛涛著..回归分析与实验设计[M].北京:北京师范大学出版社,2010:218.

二级参考文献135

共引文献475

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部