期刊文献+

实时上肢参数辨识的康复机器人力控制研究

Research on rehabilitation robot force control of realtime upper limb dynamic parameter identification
下载PDF
导出
摘要 针对病人进行康复训练时,上肢动力学参数估计不准确和训练过程发生上肢动力学参数变化,所导致康复机器人系统辅助力计算不准确,影响精确和稳定的控制练训。为减小辅助力计算误差,实现精确和稳定的训练控制,基于阻抗控制算法,使用多元线性回归方法对上肢动力学参数进行辨识,提出了一种实时上肢动力学参数辨识的阻抗控制算法,建立了康复机器人动力学模型,同时对控制算法进行仿真研究。仿真结果表明该算法能够准确地对上肢动力学参数进行辨识,有效地消除了辅助力计算误差,实现训练过程中训练轨迹精确控制。 When rehabilitating training for patients, the auxiliary force calculation errors are caused by inaccurate estimation and change of upper extremity kinetics parameters, which affect accurate and stable training control. In order to reduce the auxiliary force calculation error and achieve accurate and stable control performance, an impedance control algorithm with the real-time upper limb dynamic parameter identification is proposed based on impedance control algorithm and using multiple linear regression method to identify the upper extremity kinetics parameters in this paper. The dynamic model of the rehabilitation robot is modeled and the proposed impedance control algorithm is researched by simulation. The simulation results show that the impedance control algorithm can identify the upper extremity kinetics parameters and eliminate the auxiliary force calculation errors in the training process, and realize the precise trajectory control.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第17期233-237,249,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.51205287) 天津市高等学校科技发展基金计划项目(No.20110402)
关键词 参数辨识 康复机器人 阻抗控制 轨迹跟踪 parameter identification rehabilitation robot impedance control trajectory tracking
  • 相关文献

参考文献15

二级参考文献55

  • 1周景雷,张维海.机器人机械臂的鲁棒最优控制[J].计算机工程与应用,2007,43(8):168-170. 被引量:5
  • 2张先鹤,詹习生.CMAC与非线性PID复合控制器在机器人中的应用[J].河北工业科技,2007,24(3):155-158. 被引量:3
  • 3Rushton D N.Functional electrical stimulation[J].Physiological Measurement, 1997,18 : 241-275. 被引量:1
  • 4Noboru Matsushita,Yasunobu Handa,Masayoshi Ichie,et al.Electromyogram analysis and electrical stimulation control of paralysed wrist and hand [J] .Journal of Electromyography & Kinesiology, 1995,5(2) : 117-128. 被引量:1
  • 5Pfurtscheller G,Neuper C.Graz-BCI:state of the art and clinical applications[J].IEEE Transactions on Neural Systems And Rehabilitation Engineering, 2003,11 (2) : 177-180. 被引量:1
  • 6Pfurtscheller G,Guger C,Muller G,et al.Brain oscillations control hand orthosis in a tetraplegic[J].Neuroscience Letters,2000,292: 211-214. 被引量:1
  • 7Neuper C,Muller G,Kubler A,et al.Clinical application of an EEG-based brain-computer interface:a case study in a patient with severe motor impairment[J].Clinical Neurophysiology,2003, 114 : 399-409. 被引量:1
  • 8Besio W G,Kanthaiah Koka,Rajesh Aakula,et al.Tri-polar concentric ring electrode development for laplacian electroencephalography[J].IEEE Transactions on Biomedical Engineering,2006,53 (5) : 926-933. 被引量:1
  • 9Pfurtscheller G,Neuper C.Motor imagery activates primary sensorimotor area in humans[J].Neuroscience Letters,1997,239:65-68. 被引量:1
  • 10Pfurtscheller G,Neuper C,Guger C,et al.Current trends in graz Brain-Computer Interface (BCI)research [J].IEEE Transactions on Rehabilitation Engineering, 2000,8(2) : 216-219. 被引量:1

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部