期刊文献+

锂离子电池富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2的合成及性能 被引量:3

Synthesis and Properties of Li-Rich Cathode Material Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2 in Li-Ion Batteries
原文传递
导出
摘要 随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g^(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g^(-1),3.0C放电容量达到210 m Ah·g^(-1)。 With the development of electric vehicles, it is urgent to develop lithium-ion battery with high safety, high energy density, high power, high capacity, long lifespan, low-cost and environmental friendliness. The Li-rich, Mn based layered cathode materials exhibit many attractive features such as high capacity, high voltage plateau, good thermal stability and low prices, and are widely re- garded as one of the most promising candidates for future electric vehicles. Despite of their high capacity, these materials show a high first cycle irreversible capacity, poor rate capability and so on. Nanostructuring and the use of cathode nanomaterials offer an effective solution to improve the rate capability. Li1.2Ni0.13Co0.13Mn0.54O2 was synthesized from NiO, Co3O4 , MnCO3 and Li2 CO3 with improved solid state method. The products were analyzed by X-ray diffraetometry (XRD) , scanning electron microscopy (SEM) and electrochemical tests. The resuhs showed that the Li1.2Ni0.13Co0.13Mn0.54O2 material exhibited uniform and nano particle sizes with average size of 90 nm, and had excellent electro-chemical property. The initial discharge capacity of prepared Li1.2Ni0.13Co0.13Mn0.54O2 was 284 mAh g-1 , and coulombic efficiency was 86.1% when charged and discharged at 0.1 C within 2.0 -4.8 V. The material had good rate capability. Its 1.0C rate capability was 240 mAh g-1 , and 3. OC rate capability was 210 mAh g-1.
出处 《稀有金属》 EI CAS CSCD 北大核心 2016年第1期38-42,共5页 Chinese Journal of Rare Metals
基金 国家科技部高技术研究计划“863计划”项目(2012AA052201) 国家自然科学基金项目(51302017)资助
关键词 Li1.2Ni0.13Co0.13Mn0.54O2 锂离子电池 正极材料 纳米颗粒 Li1.2Ni0.13Co0.13Mn0.54O2 lithium-ion battery cathode material nanoparticles
  • 相关文献

参考文献17

  • 1郭炳琨 等.锂离子电池[M].长沙:中南大学出版社,2002.. 被引量:14
  • 2尹艳萍,庄卫东,王忠,卢华权,卢世刚.不同锰源对富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2性能的影响[J].稀有金属,2015,39(10):891-895. 被引量:3
  • 3吴宇平等编著..锂离子二次电池[M].北京:化学工业出版社,2002:352.
  • 4Kang S H, Kempgens P, Greenbaum S, Kropf A J, A- mine K, Thackeray M M. Interpreting the structural and electrochemical complexity of 0.5Li:MnO3. 0.5LiMO2 e- lectrodes for lithium batteries ( M = Mno. 5 - x Ni0.5 - x Co2x, 0≤x ≤0. 5) [J]. J. Mater. Chem., 2007, 17 (20) : 2069. 被引量:1
  • 5Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J. Mater. Chem., 2007, 17 (30) : 3112. 被引量:1
  • 6王昭,吴锋,苏岳锋,包丽颖,陈来,李宁,陈实.锂离子电池正极材料xLi2MnO3·(1-x)Li[Ni(1/3)Mn(1/3)Co(1/3)]O2的制备及表征[J].物理化学学报,2012,28(4):823-830. 被引量:21
  • 7Lu Z, Dahn J R. Understanding the anomalous capaci- ty of Li/Li [ NixLi(1/3 -2x/3) Mn(2/3 -x/3) ] O2 cells using in situ X-ray diffraction and electrochemical studies [ J ]. J. Electrochem. Soc., 2002, 149(7): A815. 被引量:1
  • 8Kim Y J, Hong Y, Kim M G, Cho J. Li0.93 [ Lio.21 Coo. 2s Mn0.51 ] 02 nanoparticles for lithium battery cathode material made by cationic exchange from K-bimessite [J]. Electrochem. Commun. , 2007, 9(5): 1041. 被引量:1
  • 9Kim M G, Jo M, Hong Y S, Cho J. Template-free synthesis of Li [ Nio.25 Lio. is Mno.6 ] Oz nanowires for high performance lithium battery cathode [ J ]. Chem. Com- mun. , 2009, 45: 218. 被引量:1
  • 10Wei G Z, Lu X, Ke F S, Huang L, Li J T, Wang Z X, Zhou Z Y, Sun S G. Crystal habit-tuned nanoplate ma- terial of Li ~ Lil/3_2x/3 NixMn2/3-~/3 ~ 02 for high-rate per- formance lithium-ion batteries [ J ]. Adv. Mater. , 2010, 22(39) : 4364. 被引量:1

二级参考文献21

  • 1Brodd R J, Bullock K R, Leising R A, Middaugh R L, Miller J R, Takeuchic E. Batteries, 1977 to 2002 [ J ]. J. Electrochem. Soc., 2004, 151(3) : K1. 被引量:1
  • 2Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides [ J ]. Adv. Mater., 2001, 13(12-13): 943. 被引量:1
  • 3Zhumabay B, Izumi T. Electrochemical performance of nanocomposite LiMnPQ/C cathode materials for lithium batteries [J]. Electrochem. Commun. , 2010, 12: 75. 被引量:1
  • 4Stefania F, Rodrigo L L, Doretta C, Eliana Q, Aldo M, Piercarlo M, Patrizia C. Influence of particle size and crystal orientation on the electrochemical behavior of car- bon-coated LiFePO4 [J]. J. Phys. Chem. C, 2010, 114 : 12598. 被引量:1
  • 5YuLH, CaoYL, YangHX, AiXP. Synthesis and electrochemical properties of high-voltage LiNi0.5 Mnl. s 04 electrode material for Li-ion batteries by the polymer-py- rolysis method J]. J. Solid State Electrochem. , 2006, 10 (5): 283. 被引量:1
  • 6Gao T H, Liu H Y, Zhang P, Wu S Q, Yang Y, Zhu Z Z. Structural and electronic properties of Al-doped spi- nel LiMn204 [ J]. Acta Physica Sinica, 2012, 61 (18) : 187306. 被引量:1
  • 7Dutta G, Manthiram A, Goodenough J B. Chemical synthesis and properties of Lil _a_xNi1+802 and Li [ Ni2 Q[J]. J. Solid State Chem. , 1992, 96(1) : 123. 被引量:1
  • 8Gao Y, Yakovleva M V, Ebner W B. Novel LiNi_x Tix/2 Mgg2 02 compounds as cathode materials for safer lithium-ion batteries [ J ]. Electrochem. Solid-State Lett. , 1998, 1(3): 117. 被引量:1
  • 9Vitins G, West K. Lithium intercalation into layered LinnO2[J]. J. Electrochem. Soc., 1997, 144(8): 2587. 被引量:1
  • 10Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Pre-conditioned layered electrodes for lithium batteries [J]. J. Power Sources, 2006, 153(2) : 258. 被引量:1

共引文献35

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部