期刊文献+

柠檬酸(铵)处理对Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2电化学性能影响的研究 被引量:3

Studies on the Effects from Citric Acid and Ammonium Citrate Tribasic Treatment on Electrochemical Performance of Li[Li_(0.2)Mn_(0.54)Ni_(0.13) Co_(0.13)]O_2
下载PDF
导出
摘要 以共沉淀法制备的[Mn0.54Ni0.13Co0.13]1.25CO3为前驱体,配锂焙烧获得了富锂锰基固溶体Li[Li0.2Mn0.54Ni0.13Co0.13]O2,然后分别用柠檬酸、柠檬酸三铵对该材料进行表面预处理。结果表明经柠檬酸(铵)处理后,Li[Li0.2Mn0.54Ni0.13Co0.13]O2中分别有16.37wt%和13.14wt%的锂被化学脱出。充放电测试结果表明,表面处理后的样品首次效率有了较大的提高(由63.5%分别提高到了80.2%和80.7%),0.2C循环40次容量保持率分别由91.43%提高到97.42%和92.72%,1C容量由处理前的149.5 mAh.g-1提高到179.5mAh.g-1和181.5 mAh.g-1,表明处理后材料的循环性能和倍率性能都得到了改善。这主要是由于柠檬酸(铵)处理,预先脱出了Li2MnO3组分中的部分Li2O,并在材料表面生成了类尖晶石结构的材料。 In order to improve the initial charge/discharge efficiency and rate performance of Li[Li0.2Co0.13Ni0.13Mn0.54]O2, we used citric acid and ammonium citrate tribasic to treat the materiel Li[Li0.2Co0.13Ni0.13Mn0.54]O2, which was synthesized by carbonation co-precipitated method. After surface modification, Emission Spectrometer (ICP-AES) analysis showed that lithium is the major element of the filtrate, 16.37wt% and 13.14wt% of lithium elements dissolved out during the pretreatment stage respectively, and a small amount of transition metals desorpted in this process. The charging/discharging test revealed that the materials treated by 20% of citric acid and ammonium citrate tribasic performed higher initial efficiency (80.2% and 80.7%), After 40 cycles with 0.2C cycle, the capacity retention rate increased to 97.42% and 92.70% from 91.43% ,and the capacity at 1C increased to 179.5 mAh·g^-1, 181.5 mAh·g^-1, respectively. The results showed that after the treatment of citric acid and ammonium citrate tribasic, material properties and the rate performance were both improved.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第4期786-792,共7页 Chinese Journal of Inorganic Chemistry
关键词 富锂锰基固溶体 表面改性 首次不可逆容量 manganese based solid solution surface modification irreversible capacity loss
  • 相关文献

参考文献31

  • 1Thackeray M M, Kang S H, Johnson, C S, et al. J. Mater. Chem.,2007,17:3112-3125. 被引量:1
  • 2Lim J H, Bang H, Lee K S, et al. J. Power Sources, 2009, 189:571-575. 被引量:1
  • 3Johnson C S, Li N, Lefief C, et al. Electrochem. Commun., 2007,9:787-795. 被引量:1
  • 4Lu Z , Dahn J R. J. Electrochem. Soc., 2002,149(7):A815- A822. 被引量:1
  • 5Armstrong A R, Holzapfel M, Novak P, et al. J. Am. Chem. Soc., 2006,128:8694-8698. 被引量:1
  • 6Liu J, Reeja J B, Manthiram A. J. Phys. Chem. C, 2010,114: 9528-9533. 被引量:1
  • 7Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006,9 (5):A221-A224. 被引量:1
  • 8Jung Y S, Cavanagh A S, Yan Y, et al. J. Electrochem. Soc., 2011,158(12):AI298-AI302. 被引量:1
  • 9Zhao Y, Zhao C, Feng H, et al. Electrochem. Solid-State Lett., 2011,14(1):AI-A5. 被引量:1
  • 10Zheng J M, Li J, Zhang Z R, et al. Solid State lonics, 2008, 179: 1794-1799. 被引量:1

同被引文献62

  • 1李青霞.硝酸铵氧化滴定法测定锰矿中锰含量[J].化学分析计量,2007,16(3):50-52. 被引量:12
  • 2于永丽,王乃芝,张秀娟,翟秀静,万彩敏.正极材料锰酸锂中锰的价态分析[J].冶金分析,2007,27(6):20-23. 被引量:9
  • 3MOHANTY D,KALNAUS S,MEISNER R A,et al.Structural transformation of a lithium-rich LiL2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J].Journal of Power Sources,2013,229:239-248. 被引量:1
  • 4KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature Materials,2011,10 (9):682-686. 被引量:1
  • 5LIN J,MU D,JIN Y,et al.Li-rich layered composite Li[Li0.2 Ni0.2 Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J].Journal of Power Sources,2013,230:76-80. 被引量:1
  • 6TABUCHI M,NABESHIMA Y,TAKEUCHI T,et al.Synthesis of high-capacity Ti-and/or Fe-substituted Li2 MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method[J].Journal of Power Sources,2013,221:427-434. 被引量:1
  • 7DANIEL C.Materials and processing for lithium-ion batteries[J].Jom,2008,60 (9):43-48. 被引量:1
  • 8KIM D,GIM J,LIM J,et al.Synthesis of xLi2MnO3 · (1-x)LiMO2 (M=Cr,Mn,Co,Ni) nanocomposites and their electrochemical properties[J].Materials Research Bulletin,2010,45 (3):252-255. 被引量:1
  • 9KANG S-H,THACKERAY M M.Enhancing the rate capability of high capacity xLi2 MnO3 · (1-x) LiMO2 (M=Mn,Ni,Co) electrodes by Li-Ni-PO4 treatment[J].Electrochemistry Communications,2009,11 (4):748-751. 被引量:1
  • 10KARTHIKEYAN K,AMARESH S,LEE G,et al.Electrochemical performance of cobalt free,LiL2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries[J].Electrochimica Acta,2012,68:246-253. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部