期刊文献+

具有变系数和时间延迟的随机HIV-1感染模型(英文) 被引量:1

Stochastic HIV-1 Infection Model with Varying Coefficients and Time Delay
下载PDF
导出
摘要 本文提出具有变系数和时间延迟的随机HIV-1感染模型.首先证明模型存在唯一全局正解,然后给出无感染均衡解渐近稳定的充分条件. In this paper, stochastic HIV-1 infection model with varying coefficients and time delay is proposed. It is proved that there exists the unique globally positive solution. The sufficient conditions for the asymptotic stability of the infection-free equilibrium solution are given.
出处 《应用数学》 CSCD 北大核心 2016年第1期64-69,共6页 Mathematica Applicata
基金 Supported by the Fundamental Research Funds for the Central Universities(15CX08012A)
关键词 随机HIV-1感染模型 全局正解 变系数 渐近稳定性 Stochastic HIV-1 infection model Globally positive solution Varying coemcient Asymptotic stability
  • 相关文献

参考文献1

共引文献3

同被引文献11

  • 1Gray A, Greeenhalgh D, HU L, MAO X, PAN J. A stochastic differential equation SIS epidemic model[J]. SIAM J. Appl. Math., 2011, 71:876-902. 被引量:1
  • 2Lahrouz A, Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence[J]. Stat. Probab. Lett., 2013, 83:960-968. 被引量:1
  • 3ZHAO Y, JIANG D. Dynamics of stochastically perturbed SIS epidemic model with vaccination[J]. Abstr. Appl. Anal., 2013, 2013:1-12. 被引量:1
  • 4ZHAO Yanan, JIANG Daqing. The threshold of a stochastic SIS epidemic model with vaccination[J]. Applied Mathematics and Computation, 2014, 243:718-727. 被引量:1
  • 5ZHAO Yanan, JIANG Daqing, O'Regan Donal. The extinction and persistence of the stochastic SIS epidemic model with vaccination[J]. Physica A, Statistical Mechanics and its Applications, 2013, 392:4916-4927. 被引量:1
  • 6LIN Yuguo, JIANG Daqing , WANG Shuai. Stationary distribution of the stochastic SIS epidemic model with vaccination[J]. Physica A, Statistical Mechanics and its Applications, 2014, 394:187-197. 被引量:1
  • 7ZHAO Dianli, ZHANG Tiansi, YUAN Sanling. The threshold of a stochastic SIVS epidemic model with nonlinaer saturated incidence[J]. Physica A, Statistical Mechanics and its Applications, 2016, 443:372-379. 被引量:1
  • 8LI Jianquan, MA Zhien. Global analysis of SIS epidemic models with variable total population size[J]. Mathematical and Computer Modelling, 2004, 39:1231-1242. 被引量:1
  • 9MAO X R, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics [J]. Stochastic Process. Appl., 2002, 97:95-110. 被引量:1
  • 10Liptser R Sh, Shiryayev A N. Theory of Martingales[M]. Dordrecht:Kluwer,1986. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部