摘要
在对内嵌式永磁同步电动机数学模型进行分析的基础上,详细研究了弱磁控制过程,提出了分段线性化的弱磁控制策略。根据电动机弱磁各阶段运行的特点,将弱磁控制分为三个区域,对每个区域分别线性化,得到了各区域工作点的直轴、交轴电流和控制方程。线性化后的弱磁控制策略节省了电动机工作点计算时间,提高了系统实时性能,可实现最大转矩输出。结果表明,分段线性化弱磁控制策略使内嵌式永磁同步电动机在宽调速范围内获得了更好的调速性能,电动机可控性和可靠性增强。
Based on the analysis of interior permanent magnet synchronous motors(IPMSM) mathematical model, the process of field-weakening control is studied in detail. A piece-wise linearization field-weakening control strategy is proposed in this paper. According to the characteristic of field-weakening control at different stages, the field-weakening control is divided into three areas, and all of the three areas are linearized respectively. The d-axis and q-axis current of working points, and control equation of the three field-weakening areas are got respectively. The linearized field-weakening control strategy saves the computation time of working point, improves the real-time performance of the system, and can realize maximum torque output. The test results prove that the IPMSM has better speed performance in wide speed regulating range by the use of the piece-wise linearization field-weakening control strategy. And the IPMSM is more controllable and has higher reliability.
出处
《电工技术学报》
EI
CSCD
北大核心
2015年第24期17-22,共6页
Transactions of China Electrotechnical Society
基金
国家自然科学基金(51007031)
江苏高校优势学科建设工程资助项目
关键词
内嵌式永磁同步电动机
弱磁控制
分段线性化
调速
数学模型
Interior permanent magnet synchronous motors
field-weakening control
piece-wise linearization
speed regulating
mathematical model