期刊文献+

基于粗糙集与信息增益的情感特征选择方法 被引量:5

A Sentiment Feature Selection Method Based on Rough Set and Information Gain
下载PDF
导出
摘要 为了提高情感特征提取的准确率,为高性能情感分析打下坚实的基础,提出了一种融合粗糙集与信息增益的情感特征选择方法.该方法借助信息增益判据选出高相关性的特征子集,再通过粗糙集剔除高冗余性的特征,从而得到最优的特征子集.在多个数据集上的测试表明,该方法可将若干经典方法的准确率提高4~9个百分点,是一种优秀的特征选择方法,对提升情感分析的整体性能有明显意义. A Rough Set and Information Gain based on sentiment feature selection method is proposed for building a solid foundation in sentiment analysis.The novel method firstly uses Information Gain to select a feature subset which has high relativity with the class attribute.Secondly,the features which have high redundancy will be eliminated by Rough Set.Experimental results on several datasets reveal the method makes accuracy increase 4-9percentages than other methods.It is an outstanding feature selection method and has significance in sentiment analysis.
作者 蒲国林
出处 《微电子学与计算机》 CSCD 北大核心 2016年第1期96-99,共4页 Microelectronics & Computer
基金 国家自然科学基金(61152003) 国家档案局科技计划项目(2014-X-65) 四川省教育厅科研项目(15ZB0323) 四川文理学院智能计算与物联网工程技术中心资助项目
关键词 情感分析 特征选择 粗糙集 信息增益 sentiment analysis feature selection Rough Set Information Gain
  • 相关文献

参考文献12

  • 1殷春霞,彭勤科.利用复杂网络为自由评论鉴定词汇情感倾向性[J].自动化学报,2012,38(3):389-398. 被引量:6
  • 2Bollegala D, Weir D, Carroll J. Cross-domain senti-ment classification using a sentiment sensitive thesau-rus[J]. IEEE Transactions on Knowledge and DataEngineering,2013,25(8) :1719-1731. 被引量:1
  • 3Isa Maks, Piek Vossen. A lexicon model for deep sen-timent analysis and opinion mining application [J].2012,53(4):680-688. 被引量:1
  • 4Shams M, Shakey A, Faili H. A non-parametric UDA-based induction method for sentiment analysis[C]// 16 thCSI International Symposium on Artificial Intelligence andSignal Processing, Shiraz, Fars: IEEE,2012 *216-221. 被引量:1
  • 5李素科,蒋严冰.基于情感特征聚类的半监督情感分类[J].计算机研究与发展,2013,50(12):2570-2577. 被引量:23
  • 6文翰..面向信息检索的Web文本挖掘方法研究[D].华南理工大学,2012:
  • 7Haoyang Wu, Yuyuan Wu, J inping Luo. An intervaltype-2 fuzzy rough set model for attribute reduction[J]. IEEE Transactions on Fuzzy Systems, 2012, 17(2):301 - 315. 被引量:1
  • 8You-Shyang Chen, Ching-Hsue Cheng. A soft-compu-ting based rough sets classifier for classifying IPO re-turns in the financial markets [J], Applied Soft Com-puting,2012,12(1)-462-475. 被引量:1
  • 9Mirzakhani M, Moghadam A E. Two layer algorithmfor data classification based on rough set and bayesiannetwork classifiers[C] // 13th Iranian Conference onFuzzy Systems (IFSC). Qazvin, Iran: IEEE, 2013:1-6. 被引量:1
  • 10Troussas C,Virvou M, Junshean Espinosa K,et al.Twitter news classification: theoretical and practicalcomparison of SVM against naive abayes algorithms[C] // Fourth International Conference on Informa-tion, Intelligence, Systems and Applications. Piraeus,Greece:IEEE, 2013: 13-18. 被引量:1

二级参考文献55

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2胡国平,张巍,王仁华.基于双层决策的新闻网页正文精确抽取[J].中文信息学报,2006,20(6):1-9. 被引量:16
  • 3刘迁,焦慧,贾惠波.信息抽取技术的发展现状及构建方法的研究[J].计算机应用研究,2007,24(7):6-9. 被引量:41
  • 4Cormen T H,Leiserson C E,Rivest R L,Stein C.Introduc-tion to Algorithms(Second Edition).Cambridge:The MIT Press,2001.595- 601. 被引量:1
  • 5Hatzivassiloglou V,Wiebe J M.Effects of adjective orienta-tion and gradability on sentence subjectivity.In:Proceed-ings of the18th International Conference on Computational Linguistics.Saarbrucken,Germany:ACL,2000.299-305. 被引量:1
  • 6Pang B,Lee L.Opinion mining and sentiment analysis.Foundations and Trends in Information Retrieval,2008,2(1-2):1-135. 被引量:1
  • 7夏云庆,黄锦辉.中 文网络非正规语言处理的方法与实践.全国第八届计算语言学联合学术会议.南京,中国:清华大学出版社,2005.566-572. 被引量:1
  • 8Khan A,Baharudin B,Khan K.Sentiment classification us-ing sentence-level lexical based semantic orientation of on-line reviews.Trends in Applied Sciences Research,2011,6(10):1141-1157. 被引量:1
  • 9高旸 周莉 张勇 邢春晓 孙一钢 朱先忠.面向股票新闻的情感分类方法[J].软件学报,2010,:349-362. 被引量:1
  • 10Hatzivassiloglou V,McKeown K R.Predicting the seman-tic orientation of adjectives.In:Proceedings of the35th Annual Meeting of the Association for Computational Lin-guistics and the8th Conference of the European Chapter of the Association for Computational Linguistics.Madrid,Spain:ACL,1997.174-181. 被引量:1

共引文献28

同被引文献61

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部