期刊文献+

基于三支决策粗糙集的视频异常行为检测 被引量:16

Detection of abnormal behavior in video using three-way decision rough sets
下载PDF
导出
摘要 异常行为检测在视频分析中非常重要.本文提出了一种基于主题模型和三支决策的方法来检测视频中的异常行为.首先利用改进的主题模型来产生低维特征,这些低维特征能够表示视频中的原子行为;然后采用三支决策的方式,对于确定属于异常和正常的行为做出立即决策,而对于疑似异常的行为则进行进一步的分析以减少误分率.并且通过实验证明该方法能够产生有意义的低维特征,并且具有更好的分类性能. Abnormal behavior detection is important in video analysis.In this paper,we propose a method based on topic model and three-way decision rough sets to detect abnormal behaviors in video.Firstly,we use the improved topic model to generate low-dimensional features,which can represent the atomic activities in the video.Then,three-way decision rough set method is used.It is available to make an immediate decision for determined normal and abnormal behavior.For those suspected abnormal behaviors,further analysis is needed in order to reduce the misclassification rate.Experiments prove that our approach can generate meaningful low-dimensional features and has better classification performance.
作者 谢骋 商琳
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期475-482,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61170180 61035003) 江苏省自然科学基金(BK2011005)
关键词 视频行为 异常检测 主题模型 三支决策 video behavior anomaly detection topic model three-way decision
  • 相关文献

参考文献30

  • 1Wang X, Tieu K, Grimson E. Learning semantic scene models by trajectory analysis. Proceedings of European Conference on Computer Vision, 2006: 110-123. 被引量:1
  • 2Lee J G, Han J, Li X. Trajectory outlier detection:A partition-and-detect framework. Pro ceedings of International Conference on Data En- gineering, 2008 : 140 - 149. 被引量:1
  • 3Wu S,Moore B E, Shah M. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. Proceedings of IEEE Conference on Computer Vision and Pattern Rec- ognition, 2010 : 2054 - 2060. 被引量:1
  • 4Tran D, Yuan J. Optimal spatio-temporal path discovery for video event detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2011:3321-3328. 被引量:1
  • 5Cong Y,Yuan J, Liu J. Sparse reconstruction cost for abnormal event detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2011 : 3449 - 3456. 被引量:1
  • 6Haines T S F, Xiang T. Dehwdual hierarchical dirichlet processes: A pragmatic abnormal behaviour detector. Proceedings of International Conference on Computer Vision, 2011 : 2198 - 2205. 被引量:1
  • 7Wang X, McCallum A. Topics over time: a now Markov continuous-time model of topical trends. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2006:424-433. 被引量:1
  • 8Wang X, Ma X, Grimson W E L. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (3) : 539 - 555. 被引量:1
  • 9Hospedales T M, Li J, Gong S, et al. Identifying rare and subtle behaviors: A weakly supervised joint topic model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 ( 12 ) : 2451-2464. 被引量:1
  • 10Zhao B, Li F F, Xing E P. Online detection of unusual events in videos via dynamic sparse coding. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2011 : 3313-3320. 被引量:1

同被引文献169

引证文献16

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部