期刊文献+

Markov链模型在异常检测上的应用研究 被引量:1

An Application Research of Markov Chain Model on Anomaly Detection
下载PDF
导出
摘要 Markov链模型作为一种统计分析方法是异常检测的重要分析手段 ,论文分别从单步、多步Markov链和基于Markov链的序列预测三个方面 ,研究了Markov链模型在异常检测检测上的应用 .实验表明 ,该方法在不需要任何攻击领域知识的情况下 ,能很好检测出SendMail系统调用的异常行为 . Markov chain model, as a statistical method, is an important analytical method. In this paper, Markov chain model used for anomaly detection is in discussed in depth from three aspects, one-step, multi-step Markov chain and multi-step Markov chain-based sequence prediction. The experiments show the method can detect the anomaly behavior of SendMail program without needing any system security knowledge.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第2期232-236,共5页 JUSTC
基金 国家自然科学基金重大研究计划 (90 10 4 0 30 )资助项目
关键词 入侵检测系统 网络安全 异常检测 MARKOV链模型 序列预测 系统调用 anomaly detection markov chain model sequence prediction system call
  • 相关文献

参考文献2

  • 1谢锦辉著..隐Markov模型 HMM 及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995:154.
  • 2C. Warrender, S. Forrest, B. Pearlmutler.Detecting intrusions using system calls: alternative data models [ A ]. Proceedings of the 1999 IEEE Symposium on Security and Privacy[C l, CA: IEEE Computer Society, 1999,133-145. 被引量:1

同被引文献5

  • 1ANDERSON JP. Computer security threat monitoring[ R]. TechnicalReport, TR80904, Washington: Anderson Co., 1980. 被引量:1
  • 2DENNING DE. An intrusion detection model[ J]. IEEE Transactionson Software Engineering, 1987, 13 (2): 222 - 232. 被引量:1
  • 3ANDERSON R, KHATLOK A. The use of information retrieval techniques for intrusion detection[ A]. Web proceedings of the First International Workshop on Recent Advances in Intrusion Detection(RAID 98) [ C]. http://www. raid - symposium. org/raid, 1998 -03. 被引量:1
  • 4YE N. A Markov chain model of temporal behavior for anomaly detection[ A]. Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop[ C]. http://citeseer. nj. nec. com/ye00markov. html, 2000. 被引量:1
  • 5WARRENDER C, FORREST S, PEARLMUTLER B. Detecting intrusions using system calls: alternative data models[ A]. Proceeding of the 1999 IEEE Symposium on Security and Privacy[ C]. CA: IEEE Computer Society, 1999. 133 - 145. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部