期刊文献+

可微(h-m)-凸函数的若干不等式 被引量:2

The Inequalities Involving Differentiable(h-m)-Convex Functions
下载PDF
导出
摘要 研究可微(h-m)-凸函数的不等式.首先给出在h可微且满足h(0)=0,h(1)=1的情况下,可微(h-m)-凸函数的一个必要条件:mh′(0)f(y)-h′(1)f(x)≥(my-x)f′(x),由此出发可获得若干不等式.另外,在不要求h和f可微的情况下,给出一个新的Hermite-Hadamard型不等式. The inequalities involving differentiable(h-m)-convex functions are studied.A necessary condition of differentiable(h-m)-convex functions is first given:mh′(0)f(y)-h′(1)f(x)≥(my-x)f′(x),where his differentiable and h(0)=0,h(1)=1,and several inequalities are obtained.Moreover,a new HermiteHadamard type inequality for(h-m)-convex functions is established in case of not requiring hand fbeing differentiable.
出处 《大学数学》 2015年第6期16-19,共4页 College Mathematics
关键词 (h-m)-凸函数 可微函数 Hermite-Hadamard型不等式 (h-m)-convex function differentiable function Hermite-Hadamard type inequality
  • 相关文献

参考文献6

二级参考文献15

  • 1D.S.Mitrinovib, J.E.Pec aric , A.M. Fink.Classical and New Inequalities in Analysis [M].Kluwer Academic, Dordrecht, 1993. 被引量:1
  • 2G.Toader.Some Generalizations of the Convexity [J].Proceedings of the CoUoquium on Approximation and Optimization, Univ. Cluj-Napoca.,1985:329-338,. 被引量:1
  • 3S.S.Dragomir and G.Toader.Some Inequalities for m-Convex Functions[J].Studia Univ.Babe,s-Bolyai Math., 1993,38 (1):21-28. 被引量:1
  • 4I S.Varo~anec. On h-Convexity[J]. J. Math. Anal. Appl,2007,326:303-311. 被引量:1
  • 5H.Alzer.A Superadditive Property of Hadamard' s Gamma Function [ J ].Abh.Math.Semin.Univ.Hambg,, 2009,79:11-23. 被引量:1
  • 6M.Z.Sarikaya,E.Set and M.E.Ozdemir.On Some New Inequalities of Hadamard Type Involving h-Convex Functions [J].Acta Math.Comenianae,Vol.LXXIX, 2010,2:265-272. 被引量:1
  • 7M.Z.Sarikaya,A.Saglam and H.Yildirim. On some Hadamard-type inequalities for h-Convex Functions [J],Joumal of Mathematical Inequalities,2008.2(3):335-341. 被引量:1
  • 8M.E.Ozdemir,A.O.Akdemir and E.Set.On (h, m)-Convexity and Hadamard-type Inequalities [J]. Arxiv, 2011, 1103.6163. 被引量:1
  • 9M.Emin 0zdemir, Mustafa G tirbtiz,Ahmet Ocak,Akdemir.Inequalities for h-Convex Functions via Further Pr operties[J]. Rgmia coil, 2011,14(14).O1ine http://ajmaa.org/Rgmia/papers/v14/v14a22. 被引量:1
  • 10Gill P M,Pearce C E M,Pe(c)ari(c) J. Hadamard''''s inequality for r-convex functions[J].Journal of Mathematical Analysis and Applications,1997,(02):461-470. 被引量:1

共引文献3

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部