期刊文献+

Stability of Rarefaction Wave for Compressible Navier-Stokes Equations on the Half Line 被引量:1

Stability of Rarefaction Wave for Compressible Navier-Stokes Equations on the Half Line
原文传递
导出
摘要 This paper is concerned with the large-time behavior of solutions to an initial-boundary-value problem for full compressible Navier-Stokes equations on the half line(0,∞),which is named impermeable wall problem.It is shown that the 3-rarefaction wave is stable under partially large initial perturbation if the adiabatic exponent γ is close to 1.Here partially large initial perturbation means that the perturbation of absolute temperature is small,while the perturbations of specific volume and velocity can be large.The proof is given by the elementary energy method. This paper is concerned with the large-time behavior of solutions to an initial-boundary-value problem for full compressible Navier-Stokes equations on the half line(0,∞),which is named impermeable wall problem.It is shown that the 3-rarefaction wave is stable under partially large initial perturbation if the adiabatic exponent γ is close to 1.Here partially large initial perturbation means that the perturbation of absolute temperature is small,while the perturbations of specific volume and velocity can be large.The proof is given by the elementary energy method.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期175-186,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11401318,11171153) the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.14KJB110020) the Scientic Research Foundation of NUPT(No.NY214023)
关键词 compressible Navier-Stokes equations rarefaction wave stability compressible Navier-Stokes equations rarefaction wave stability
  • 相关文献

参考文献21

  • 1Dou, Y., Sheng, W. Asymptotic stability of viscous shock profiles for one-dimensional compressible viscous gas. Chinese Ann. Math., 23A: 483-492 (2002). 被引量:1
  • 2Duan, R., Liu, H., Zhao, H. Global stability of rarefaction waves for the compressible Navier-Stokes equations. Trans. Amer. Math. Society, 361:453-493 (2009). 被引量:1
  • 3Huang, F., Li, J., Shi, X. Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space. Commun. Math. Sci., 8(3): 639-654 (2010). 被引量:1
  • 4Huang F., Matsumura A., Shi X. A gas-solid free boundary problem for compressible viscous gas. SIAM J. Math. AnaL, 34:1331 1355 (2003). 被引量:1
  • 5Huang, F., Matsumura A., Shi X. Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas. Comm. Math. Phys., 239:261 285 (2003). 被引量:1
  • 6Huang, F., Qin, X. Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation. J. Diff. Eqns., 246:4077-4096 (2009). 被引量:1
  • 7Huang F., Xin, Z., Yang, T. Contact discontinuity with general perturbations for gas motion. Adv. Math, 219:1246-1297 (2008). 被引量:1
  • 8Kanel' Y. On a model system of equations of one-dimensional gas motion. Differeneial'nya Uravnenua, 4 374-380 (1968) (In Russian). 被引量:1
  • 9Kawashima, S., Matsumura, A., Nishihara, K. viscous heat-conductive gas. Proc. Japan Acad Asymptotic behavior of solutions for the equations of a Set. A, 62:249-252 (1986). 被引量:1
  • 10Kawashima, S., Nishibata, S., Zhu, P. Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space. Comm. Math. Phys., 240:483-500 (2003). 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部