期刊文献+

Large-Time Behavior of Periodic Solutions to Fractal Burgers Equation with Large Initial Data 被引量:1

Large-Time Behavior of Periodic Solutions to Fractal Burgers Equation with Large Initial Data
原文传递
导出
摘要 The asymptotic behavior of periodic solutions to fractal nonlinear Burgers equation is considered and the initial data are allowed to be arbitrarily large.The exponential decay estimates of the solutions are obtained for the power of Laplacian α∈[1/2,1).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第3期405-418,共14页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 11071162) the Shanghai Jiao Tong University Innovation Fund for Postgraduates (No. WS3220507101)
关键词 Fractal Burgers equation Large-time behavior Large initial data Periodic solution Exponential decay Burgers方程 周期解 大时间行为 Laplacian 分形 渐近行为 衰减估计 非线性
  • 相关文献

参考文献18

  • 1Dong, H., Du, D. and Li, D., Finite time singularities and global well-posedness for fractal Burgers equa- tions, Indiana Univ. Math. J., 58(2), 2009, 807-821. 被引量:1
  • 2Miao, C. and Wu, G., Global well-posedness of the critical Burgers equation in critical Besov spaces, J. Diff. Eq., 247(6), 2009, 1673-1693. 被引量:1
  • 3Chan, C. H. and Czubak, M., Regularity of solutions for the critical N-dimensional Burgers equation, Ann. Inst. H. Poincar6 Anal. Non Lingaire, 27(2), 2010, 471-501. 被引量:1
  • 4Kiselev, A., Nazarov, F. and Shterenberg, R., Blow up and regularity for fractal Burgers equation, preprint. 被引量:1
  • 5Kiselev, A., Nazarov, F. and Volberg, A., Global well-posedness for the critical 2D dissipative quasi- geostrophic equation, Invent. Math., 167, 2007, 445-453. 被引量:1
  • 6Dong, H., Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, Discrete Contin. Dyn. Syst., 26(4), 2010, 1197-1211. 被引量:1
  • 7Biler, P., Funaki, T. and Woycznski, W. A., Fractal Burgers Equation, J. Diff. Eq., 148, 1998, 9-46. 被引量:1
  • 8Alibaud, N., Droniou, J. and Vovelle, J., Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Diff. Eq., 4(3), 2007, 479-499. 被引量:1
  • 9Kiselev, A., Regularity and blow up for active scalars, Math. Model. Nat. Phenom., 5(4), 2010, 225-255. 被引量:1
  • 10Wu, J. H., The quasi-geostrophic equation and its two regularizations, Commun. Part. Diff. Eq., 27, 2002, 1161-1181. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部