期刊文献+

抑制船尾拖纹的船舶显著性视频检测方法 被引量:4

Ships Saliency Detection Algorithm for Inhibiting Stern Ripples Based on Video Sequence
原文传递
导出
摘要 运动船舶尺寸等参数的视频检测中,与船体同步运动的水面拖纹干扰会严重影响检测精度.为此,在描述显著性检测机理的基础上,提出了抑制船尾拖纹的船舶显著性视频检测方法:根据颜色对比度直方图得到内河场景的显著图;将原图超像素分割成若干子区域,以区域空间位置关系改进直方图对比度显著性检测结果得到区域显著图;通过该区域显著图初始化GrabCut算法,迭代分割过程中加入腐蚀膨胀操作来逼近目标边缘,从而提取运动船舶.实况视频测试结果表明,该方法能有效地抑制船尾拖纹,准确地检测出内河运动船舶,准确性达到94.6%. In the video detection of parameters such as ship size,the synchronous movement of the stern ripples seriously affects the accuracy. A novel algorithm of ships saliency detection for inhibiting the stern ripples was proposed based on video sequence. Firstly,the algorithm utilized a histogram-based contrast( HC) method to define HC saliency map for inland waterway by using color statistics of the input image.Then,it performed super-pixel segmentation on original image to get several sub-regions and used regional spatial relationship to improve HC saliency test results,which was named as regional saliency map. Finally,by the initialization of Grab Cut algorithm with the regional saliency map,the iterative process was added by erosion and dilation operations to get close to the target edge,so that the moving ship was extracted. Experimental results showed that the proposed approach could effectively restrain the stern ripple,accurately detect the ship in inland waterway,and its accuracy was up to 94. 6%.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2017年第S1期72-76,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学青年基金项目(61502226) 国家船联网专项科技项目(2012-364-641-209)
关键词 船尾拖纹 显著性 超像素分割 GrabCut算法 stern ripples saliency super-pixel segmentation GrabCut algorithm
  • 相关文献

参考文献1

二级参考文献14

  • 1Wren C R. Azarbayejani A,Darrell T, et al. Pfind-er: Real-time tracking of the human body[J]. IEEETransactions on Pattern Analysis and Machine Intelli-gence. 1997, 19(7): 780-785. 被引量:1
  • 2Friedman N,Russell S. Image vSegmentation in videosequences: A probabilistic approach[C] // Proceedingsof the 13th Conference on Uncertainty in Artificial In-telligence. USA: Morgan Kaufmann Publishers?1997: 175-181. 被引量:1
  • 3Stauffer Grimson W E L. Adaptive backgroundmixture models for real-time tracking [ J ]. IEEETransactions on Pattern Analysis and Machine Intelli-gence, 2000, 22(8) : 747-757. 被引量:1
  • 4Zivkovic Z, van der Heijden F. Efficient adaptivedensity estimation per image pixel for the ta‘sk ofbackground subtraction[J], Pattern Recognition Let-ters, 2006, 27(7): 773-780. 被引量:1
  • 5Piccardi M. Background subtraction technoques: Areview[C] // IEEE International Conference on Sys-tems, Man and Cybernetics. Piscataway NJ : IEEEPublishers, 2004: 3099-3104. 被引量:1
  • 6Zivkovic Z. Improved adaptive Gaussian mixturemodel for background subtraction[C] // InternationalConference on Pattern Recognition. Washington, DC:IEEE Computer Society, 2004 : 28-31. 被引量:1
  • 7KaewTraKulPond P,Bowden R. An improved adap-tive background mixture model for realtime trackingwith shadow detection [C] // Proceedings of the 2thEuropean Workshop on Advanced Video-Based SurveU-lance Systems. Boston: Kluwer Academic Publishers,2001:135-144. 被引量:1
  • 8Elgammal A, Duraiswami R,Harwood D,et al.Background and foreground modeling using nonpara-metric kernel density estimation for visual surveillance[J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163. 被引量:1
  • 9Magee R D. Tracking multiple vehicles using fore-ground, background and motion models [ J]. Imageand Vision Computing. 2004,22(2) : 143-155. 被引量:1
  • 10Heikkila M,Pietikainen M. A texture-based methodfor modeling the background and detecting movingobjects[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2006,28(4) : 657-662. 被引量:1

共引文献4

同被引文献25

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部