摘要
We study space-like self-shrinkers of dimension n in pseudo-Euclidean space Rm^m+n with index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms of the mean curvature or the image of Gauss maps.
We study space-like self-shrinkers of dimension n in pseudo-Euclidean space Rm^m+n with index m. We derive drift Laplacian of the basic geometric quantities and obtain their volume estimates in pseudo-distance function. Finally, we prove rigidity results under minor growth conditions in terms of the mean curvature or the image of Gauss maps.
基金
Supported by National Natural Science Foundation of China(Grant No.11271072)
He’nan University Seed Fund