摘要
把“N-门限值进入控制策略”引入到具有温储备失效和延迟修理的M/G/1可修排队系统,其中在系统处于温储备失效的状态下最多容许N(≥1)个顾客进入系统.利用全概率分解技术和Laplace变换工具,讨论了系统在任意时刻t队长的瞬态和稳态分布,得到了稳态队长分布的递推表达式.同时分别讨论了当N=1与N-00时的特殊情况.最后,建立了系统单位时间总成本费用函数,通过数值计算例子讨论了最优门限值N.
This paper considers an M/G/1 repairable queuing system with warm standby and delayed repair, in which the "N-threshold entering-control policy" is introduced. In such a policy, at most N(≥ 1) customers are allowed to enter into the system during the warm standby failure period. By the total probability decomposition technique and the Laplace transform, this paper discusses the transient queue length distribution and the steady state queue length distribution at any time t, and obtain the recursion expression of the steady state queue length distribution. Moreover, This paper also considers some special cases when N = I and N -. Finally, the total long run expected average cost per unit time for the system is developed, and the optimal threshold N* is determined by numerically examples.
出处
《系统工程学报》
CSCD
北大核心
2015年第6期852-864,共13页
Journal of Systems Engineering
基金
国家自然科学基金资助项目(71171138
71571127
71301111)
关键词
可修排队系统
温储备失效
N-门限值进入控制策略
队长分布
全概率分解
repairable queueing system
warm standby failure
N-threshold entrance control policy
queue- length distribution
total probability decomposition