期刊文献+

基于近邻传播的时间序列基因表达谱聚类算法

A cluster Algorithm for Time-course Gene Expression Profile Based on Affinity Propagation
下载PDF
导出
摘要 聚类是识别基因表达数据蕴含的关键基因调控模块的一种有效方法,基因表达谱的相似性度量是聚类的关键问题.然而,一般的相似性度量方法不能刻画时间序列基因表达谱数据所蕴含的时间延迟、反向相关和局部相关等复杂的基因调控关系.针对时间序列基因表达谱数据,提出一种基于近邻传播和动态规划的相似性度量方法和聚类算法.在大鼠再生肝细胞基因表达谱数据集上的聚类结果与基因功能富集分析结果高度一致,证明算法在时间序列基因表达谱数据聚类上的有效性. Clustering is an effective method used to identify key gene regulation modules from time-course gene expression data.An important problem in clustering is similarity measure between gene expression profiles.However,general similarity measurement methods are not suitable for gene expression data with time delay,invert correlation and transient correlation feature.Since temporal feature reflect complex regulation relationships between genes,a similarity measurement method for timecourse gene expression data and a clustering algorithm based on affinity propagation and dynamic programming methods were proposed.Clustering results in hepatocyte gene expression dataset during rat liver regeneration showed that proposed algorithm is high degree of consensus with gene function enriched analysis.Results shows validity of proposed algorithm applied in timecourse gene expression data.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期134-140,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家973前期研究专项基金(2012CB722304) 河南省基础与前沿计划研究项目(122300410355)
关键词 近邻传播 时间序列 反向相关 瞬时相关 基因表达谱 affinity propagation time-course invert correlation transient correlation gene expression prolife
  • 相关文献

参考文献17

  • 1徐存拴,章静波著..大鼠肝再生的功能基因组学研究 中[M].北京:高等教育出版社,2009:2019.
  • 2He F, Zeng A P. In search of functional association from time-series microarray data based on the change trend and level of gene expres- sion[J]. BMC Bioinformatics, 2006,7 (69) : 1-15. 被引量:1
  • 3Weber C C, Hurst L D. Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene or- der conservation[J]. Genome biology, 2011,12: R23. 被引量:1
  • 4Wang G, Zhao Y H, Zhao X G, et al. Efficiently mining local conserved clusters from gene expression data[J]. Neurocomputing,2009, 73(7/8/9): 1425-1437. 被引量:1
  • 5Leone M, Sumedha, Weigt M. Clustering by soft-constraint affinity propagation: applications to gene-expression data[J]. Bioinformat- ics, 2007,23 (20) : 2708-2715. 被引量:1
  • 6Kiddle S J, Windram O P F, McHattie S, et al. Temporal clustering by affinity propagation reveals transcriptional modules in Arabidop- sis thaliana[J]. Bioinformatics,2010,26(3) :355-362. 被引量:1
  • 7Yu Z W, Chen H T, You J, et al. Hybrid Fuzzy Cluster Ensemble Framework for Tumor Clustering from Biomolecular Data[J]. IEEE- ACM transactions on computational biology and bioinformatics,2013,10(3):657-670. 被引量:1
  • 8Feng Y H, Wang J T. Prediction of Drug Target Proteins with Affinity Propagation Algorithm[J]. Research journal of biotechnology, 2013,8(6) :38-42. 被引量:1
  • 9Wang M, Zhang W, Ding W, et al. Parallel Clustering Algorithm for Large-Scale Biological Data Sets [ J]. PLOS ONE, 2014,9 (4): e91315. 被引量:1
  • 10Chiu T Y, Hsu T C, Yen C C, et al. Interpolation based consensus clustering for gene expression time serles[J]. BMC Bioinformatics, 2015,17:e117. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部