期刊文献+

一种识别基因调控元件的新型优化算法 被引量:3

A NOVEL OPTIMISATION ALGORITHM FOR GENE REGULATORARY ELEMENTS RECOGNITION
下载PDF
导出
摘要 基因调控元件的识别是生物信息学中的重要研究课题之一。目前已有的算法大都存在容易过早陷入局部最优以及时间复杂度过高等问题。为此,提出一种识别基因调控的新型优化算法ACRR(ant-colony-regulatory-recognition)。该算法利用蚁群优化算法能够较快求解复杂优化问题的优越性来解决此问题,不仅提高了解的质量,而且大大地降低了算法的时间复杂度。实验结果表明,与其他类似算法相比,该算法所得结果的准确性更高,具有更快的识别速度。 It is one of the important research topics for gene regulatorary elements recognition in bioinformatics. Most of current regulatorary elements recognition algorithms have the problems of easily converging into premature local optimum and high time complexity. Therefore, we propose a novel optimisation algorithm named ACRR (ant-colony-regnlatory-recognition) for regulatory elements recognition. Based on the predominance of ant-colony algorithm in fast resolving the complicated optimisation, the ACRR can find the solution for this problem with improved quality, and can also greatly reduce the time complicity of the algorithm. Experimental results show that compared with other similar algorithms, ACRR achieves higher accuracy in solutions and has faster recognition speed as well.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第1期21-28,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61070047 61070133 61003180) 国家重点基础研究发展计划(2012CB316003) 江苏省自然科学基金项目(K2010318 BK21010134) 江苏省高校科研基金项目(09KJB20013)
关键词 生物信息学 基因调控元件 蚁群算法 Bioinformatics Gene regulatorary elements Ant-colony algorithm
  • 相关文献

参考文献6

二级参考文献153

  • 1刘军,孙健,凌伦奖,陈润生.用比较聚类法寻找转录因子的结合位点[J].生物物理学报,1996,12(3):459-464. 被引量:2
  • 2高春锦,谭立扬.非编码DNA的研究[J].北京工业大学学报,2006,32(9):841-846. 被引量:1
  • 3Biemar F, Zinzen R, Ronshaugen M, Sementchenko V, Manak JR, Levine MS. Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci USA, 2005,102(44):15907-15911 被引量:1
  • 4Bulyk ML, Johnson PL, Church GM. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res, 2002,30(5):1255-1261 被引量:1
  • 5Man TK, Stormo GD. Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res, 2001,29(12):2471-2478 被引量:1
  • 6Zhou Q, Liu JS. Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics, 2004,20(6) :909-916 被引量:1
  • 7Xing EP, Wu W, Jordan MI, Karp RM. Logos: a modular bayesian model for de novo motif detection. J Bioinform Comput Biol, 2004,2(1):127-154 被引量:1
  • 8Hong P, Liu XS, Zhou Q, Lu X, Liu JS, Wong WH. A boosting approach for motif modeling using ChiP-chip data. Bioinformatics, 2005,21(11):2636-2643 被引量:1
  • 9Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res, 1990,18(20): 6097-6100 被引量:1
  • 10Bussemaker H J, Li H, Siggia ED. Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Natl Acad Sci USA, 2000,97(18): 10096~10100 被引量:1

共引文献34

同被引文献37

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部