期刊文献+

基于光纤的反射模式的声分辨光声显微系统 被引量:2

An acoustic-resolution photoacoustic microscopy system based on fiber reflection mode
原文传递
导出
摘要 提出一种简单的基于光纤照明的暗场反射型声分辨光声显微(AR-PAM)系统。9根光纤均匀分布在超声换能器周围,每根光纤与声换能器中心轴线夹角为45°,光纤传输脉冲激光进入样本内部,形成一个中心无光的环形聚焦区域,与声换能器的焦面重合,实现暗场共焦光声成像。声换能器的中心频率为50 MHz,带宽为30 MHz,声透镜的焦距为4.1mm,F值为1.4。使用本文系统分别对打印的200μm宽黑格子和大鼠耳朵进行扫描成像实验,成像的黑格子宽度与实际宽度相符合,而且在大鼠耳朵扫描图像上可以清晰分辨出扫描部位的血管。实验结果证明,基于简单光纤照明的共焦暗场AR-PAM系统具有较高的分辨率、对比度和大的成像深度。 Acoustic-resolution photoacoustic microscopy(AR-PAM)with dark-field confocal illumination can be used to obtain high-resolution images of the absorber in the deep tissue.However,most current systems use complex optical components for illumination,and require highly sensitive alignment.This paper introduces a simple AR-PAM in dark reflection mode based on fiber for illumination.9pieces of fiber are uniformly distributed around the ultrasonic transducer,and the angle between each fiber and the center axis of acoustic transducer is 45°.The pulsed laser transmitted into the interior of the sample by fiber forms the circular focusing area with dark center,coinciding with the focal plane of acoustic transducer and achieving dark-field confocal photoacoustic imaging.In this system,the center frequency of the acoustic transducer is 50 MHz,the bandwidth is 30 MHz,the focal length of the sound lens is 4.1mm,and the F-value is 1.4.From the scanning image of printing black grid with 200μm width and rat ear obtained by the system,the black grid width of the scanning image is consistent with the actual width,and the vessel of the scanning position could be clearly distinguished from the surrounding tissue.The results show that this system has high resolution and contrast and large imaging depth.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第11期2241-2245,共5页 Journal of Optoelectronics·Laser
基金 教育部博士点基金项目(20123120120012)
关键词 声分辨光声显微(AR-PAM)系统 暗场共焦 高分辨率 acoustic-resolution photoacoustic microscopy(AR-PAM)system dark-field confocal illumination high resolution
  • 相关文献

参考文献2

二级参考文献20

  • 1Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Kvster R W and Ntziachristos V 2009 Nature Photon. 3 412. 被引量:1
  • 2Zhang H F, Stoica M G and Wang L H 2006 Nature Biotechnol. 24 848. 被引量:1
  • 3Yang D W, Xing D, Yang S H and Xiang L Z 2007 Opt. Express 15 15566. 被引量:1
  • 4Chen X, Tang Z L, He Y H, Liu H F, Wei Y D and Wu Y B 2009 J. Biomed. Opt. 14 059801. 被引量:1
  • 5Su Y X, Zhang F, Xu K X, Yao J Q and Wang R K 2005 J. Phys. D: Appl. Phys. 38 2640. 被引量:1
  • 6Yang S H, Xing D, Zhou Q, Xiang L Z and Lao Y Q 2007 Med. Phys. 34 3294. 被引量:1
  • 7Yang S H, Xing D, Lao Y Q, Yang D W, Zeng L M, Xiang L Z and Chen W 2007 Appl. Phys. Lett. 90 243902. 被引量:1
  • 8Lao Y Q, Xing D, Yang S H and Xiang L Z 2008 Phys. Med. Biol. 53 4203. 被引量:1
  • 9Xiang L Z, Xing D, Gu H M, Zhou F F, Ying D W, Zeng L M and Yang S H 2007 Chin. Phys. Lett. 24 751. 被引量:1
  • 10Hawrys D and Sevick-Muraca E 2000 Neoplasia 2 388. 被引量:1

共引文献19

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部