期刊文献+

模拟退火优化FCM聚类高光谱图像压缩研究 被引量:2

A New FCM Based on Simulated Annealing of Hyperspectral Image Compression
原文传递
导出
摘要 基于矢量量化的高光谱图像有损压缩算法可以获得较高的压缩比,但是其时间复杂度高,失真较大.为此,提出了模拟退火优化模糊C均值聚类(FCM)的高光谱图像有损压缩算法.先对高光谱图像进行自适应波段合并算法降维,利用肘部现象确定量化级数,结合模拟退火的全局寻优能力和模糊聚类的快速收敛能力,找到最优解后恢复维度,最后去模糊优化编码方案.通过这种方法,在提高高光谱图像压缩运算效率和减小解压后失真方面都有了较大的优化,是基于矢量量化的高光谱图像压缩的可行方法. Lossy compression of hyperspectral image based on vector quantization algorithms can achieve a high compression ratio,but it is of time complexity and great distortion. This article proposed a new fuzzy C-means clustering( FCM) algorithm based on simulated annealing. Firstly,the dimensions were reduced by using the algorithm of adaptive band combination dimensional reduction( ABC),then the number of clusters with the elbow was determined. FCM was combined with simulated annealing,and found optimal result quickly,then recovered dimensions. We got optimization coding by deblurring U.Through this approach,the efficiency has been improved and the distortions have been reduced greatly.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第5期58-61,70,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划(863计划)项目(1212011120221)
关键词 模拟退火 模糊聚类 降维 肘部现象 矢量量化 simulated annealing fuzzy C-means clustering dimension reduction the elbow vector quantization
  • 相关文献

参考文献3

二级参考文献18

  • 1SWELDENS W. The lifting scheme: a construction of second generation wavelets[J]. SIAM Math Anal, 1997, 29(2):511-546. 被引量:1
  • 2NASRABADI N M, FENG Y. Vector quantization of images based upon the Kohonen self-organizing feature maps[A]. Proc ICNN[C]. San Diego, 1988. 被引量:1
  • 3ALCEU D S, BRITTO J, PAULO S L. A low-cost parallel K-means VQ algorithm using cluster computing [A]. IEEE Proceedings of the Seventh International Conference on Document Analysis and Recognition[C]. Edinburgh, Scotland, 2003. 被引量:1
  • 4YANG X Y. An Enhanced SOFM method for automatic recognition and identification.of digital modulations[A]. IEEE Computer Society[C]. Perth, Anstralia, 2004. 被引量:1
  • 5阎敬文.数字图像处理技术与图像图形学基本教程[M].北京:科学出版社,2002. 被引量:1
  • 6TEUVO K. Self-organizing maps of massive document collections [A]. IEEE-INNS-ENNS International Joint conference on Neural Networks (IJCNN'00) [C]. Como,Italy, 2000. 被引量:1
  • 7ROGER R E, CAVENOR M C. Lossless compression of AVIRIS images [ J ]. IEEE Trans on Image Processing, 1996, 5(5): 713-719. 被引量:1
  • 8RYAN M J, ARNOLD J F. Lossy compression of hyperspectral data using vector quantization[ J]. Remote Sens Environ, 1997,61:419 -436. 被引量:1
  • 9RYAN M J, ARNOLD J F. The lossless compression of AVIRIS images by vector quantization[J ]. IEEE Tram on Geoscience and Remote Sensing, 1997, 35(3) : 546-550. 被引量:1
  • 10LINDE Y, BUZO A, GRAY R. An algorithm for vector quantizer design [ J ]. IEEE Transactions on Communications, v COM-28, 1980, 1:84-95. 被引量:1

共引文献12

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部