期刊文献+

基于自适应模糊度参数选择改进FCM算法的负荷分类 被引量:13

Load classification based on improved FCM algorithm with adaptive fuzziness parameter selection
原文传递
导出
摘要 在建立了负荷分类五阶段过程模型的基础上,提出了用类内距离和与类间距离和之比作为负荷分类评价指标自适应选择模糊度参数的方法,同时用模拟退火算法和遗传算法对模糊C均值(FCM)算法的搜索性能进行优化.实验结果表明,在负荷分类中常用的模糊度参数值m=2并不是最优的,负荷分类中模糊度参数的最优取值区间为[2.6,3.2].同时,改进算法还克服了传统FCM算法全局搜索能力不足的问题,提高了负荷分类的精确性和有效性. This paper proposes an adaptive fuzziness parameter selection method of fuzzy c-means (FCM) algorithm based on the establishment of five-stage load classification process model. The evaluation index of adaptive fuzziness parameter selection is the ratio of the sum of within-class distances and the sum of between-class distances. At the same time, simulated annealing algorithm and genetic algorithm are utilized to optimize the global search capability of FCM algorithm. Experimental results show that the widely used fuzziness parameter of FCM algorithm in load classification vn = 2 is not optimal, and we give the optimum range that is [2.6, 3.2]. The modified algorithm enhances the global search capability of traditional FCM algorithm, thus enhancing the accuracy and effectiveness of load classification.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第5期1283-1289,共7页 Systems Engineering-Theory & Practice
基金 国家高技术研究发展计划(863计划)(2011AA05A116) 国家自然科学基金(71131002 71071045)
关键词 负荷分类 模糊C均值(FCM)算法 模糊度参数 load classification fuzzy c-means (FCM) algorithm fuzziness parameter
  • 相关文献

参考文献27

  • 1Chicco G.Overview and performance assessment of the clustering methods for electrical load pattern grouping[J].Energy,2012,42(1):68-80. 被引量:1
  • 2Rasanen T,Voukantsis D,Niska H,et al.Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data[J].Applied Energy,2010,11(87):3538-3545. 被引量:1
  • 3Chicco G,Napoli R,Piglione F.Comparison among clustering techniques for electricity customer classification[J].IEEE Transactions on Power Systems,2006,21(2):933-940. 被引量:1
  • 4Tsekouras G J,Kotoulas P B,Tsirekis C D,et al.A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers[J].Electric Power Systems Research,2008,78(9):1494-1510. 被引量:1
  • 5Bezdek,J.Fuzzy mathematics in pattern classification[D].Cornell University,1974. 被引量:1
  • 6李培强,李欣然,陈辉华,唐外文.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. 被引量:131
  • 7Prahastono I,King D J,Ozveren C S,et al.Electricity load profile classification using fuzzy c-means method[C]//43rd International Universities Power Engineering Conference,2008:1-5. 被引量:1
  • 8李欣然,姜学皎,钱军,陈辉华,宋军英,黄良刚.基于用户日负荷曲线的用电行业分类与综合方法[J].电力系统自动化,2010,34(10):56-61. 被引量:81
  • 9诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 10Anuar N,Zakaria Z.Cluster validity analysis for electricity load profiling[C]//IEEE International Conference on Power and Energy,2010:35-38. 被引量:1

二级参考文献74

共引文献658

同被引文献114

引证文献13

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部