期刊文献+

多特征和神经网络相融合的体育视频识别 被引量:4

Sports video recognition based on multi- features and neural network
原文传递
导出
摘要 为了提高体育视频识别的精度,提出一种多特征和神经网络相融合的体育视频识别模型(MF-RBFNN).分别提取反映体育视频的静态和动态特征,然后采用RBF神经网络对静态和动态特征分别分类,并将初步识别结果构造基本概率指派,运用证据理论对初步结果进行融合,得到体育视频识别结果.结果表明,相对于对比模型,MF-RBFNN提高了体育视频识别精度,是一种有效的体育视频识别方法. In order to improve recognition rate of sports video,a novel sports video recognition method based on multi- features ad neural network was proposed. Firstly,the color,texture,brightness,motion vector features of sports video were extracted,and then the features were input into RBF neural network to learn and got the preliminary classification results which were taken as evidences of evidence theory,finally,evidence theory was used to fuse preliminary classification results and get the final recognition results of sports video,the simulation results show that the proposed method has improved the recognition rate of sports video and it is an effective sports video recognition method,compared with the reference algorithms.
作者 朱欣华
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期97-102,共6页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖北省教育厅项目(14G179)
关键词 体育视频 特征提取 证据理论 分类器设计 sports video feature extraction evidence theory classifier design
  • 相关文献

参考文献15

  • 1Snoek C M, Worring M. Multi modal video indexing: a review of the state - of - the - art [ J ]. Multi Media Tools and Applications ,2005,25 ( 1 ) :5 - 35. 被引量:1
  • 2Kalalselvi M ,Palanivel S. A novel block intensity comparison code for video classification and retrieval[ J]. Expert Systems with Applications,2009 (36) :6415 - 6420. 被引量:1
  • 3侯绿林,白亮,老松杨.一种压缩域中的体育视频慢镜头探测方法[J].计算机科学,2009,36(9):283-286. 被引量:5
  • 4林彬,刘群,王群,聂燕柳.足球视频镜头分类方法[J].计算机工程与设计,2012,33(4):1467-1471. 被引量:6
  • 5Liu J, Tong X F, Li W L, et al. Automatic player detection, labeling and tracking in broadcast soccer video [ J ]. Pattern Recognition Letters,2009,30 (5) : 103 - 113. 被引量:1
  • 6Zhao Y, Zhu Z. TSVM - HMMI : Transductive SVM based hidden Markov model for automatic image annotation [ J ]. Expert Systems with Applications,2009,36(10) :9813 -9818. 被引量:1
  • 7Ma Y F, Zhang H J. Motion pattern based video classification and retrieval [ J ]. EURASIP Journal on Applied Signal Processing, 2013(2) :199 -208. 被引量:1
  • 8Kalaiselvi M, Palanivel S. A novel block intensity comparison code for video classification and retrieval [ J ]. Expert Systems with Applications ,2014,45 ( 36 ) :6415 - 6420. 被引量:1
  • 9宋刚,肖国强,代毅,李占闯.基于视频区域特征及HMM的体育视频分类研究[J].西南师范大学学报(自然科学版),2010,35(2):180-184. 被引量:10
  • 10朱映映,刘剑武,宋娜.篮球视频冗余数据分析与检测[J].小型微型计算机系统,2010,31(9):1873-1876. 被引量:5

二级参考文献87

共引文献88

同被引文献30

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部