期刊文献+

基于视频区域特征及HMM的体育视频分类研究 被引量:10

Video Classification Based on Region Features and HMM
下载PDF
导出
摘要 提出了一种基于视频区域特征的体育视频分类方法.首先将帧分块,对块亮度均值大小进行比较得到块亮度比较编码信息BICC,以及对视频帧各块的颜色分量进行统计得到块颜色直方图;再利用这些特征通过SVM对体育视频进行分类;最后利用一阶HMM对SVM的输出结果进行后处理,得到视频的最终分类结果.实验结果表明,方法对于体育视频分类的效果较好. Considering that the average intensity and color are different in regions of video frame, the authors propose a video classification method based on region features. First, divide the frame into blocks, then according to comparison of the average intensity among different blocks to get the feature block intensity comparison code (BICC), and get the block color histogram through the statistics of color components in each blocks of frame. Then the authors classify the video frames using SVM with extracted features. Finally, a hidden Markov model is employed to process the data getting from SVM to enhance the performance of video classification. The experimental results show that the approach proposed in the paper outperforms other methods based on features such as only BICC, edge and Mathematical Morphology.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期180-184,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市科委自然科学基金资助项目(CSTC2008BB2252)
关键词 块亮度比较编码 块区域颜色直方图 支持向量机 隐马尔可夫模型 block intensity comparison code (BICC) block histogram (BlockHist) SVM HMM
  • 相关文献

参考文献9

  • 1刘芳.中国第29届奥运奖牌与竞技体育发展研究[J].西南师范大学学报(自然科学版),2009,34(2):181-184. 被引量:6
  • 2Konstantinos Rapantzikos, Nicolas Tsapatsolis, Yannis Avrithis. Spatiotemporal Saliency for Video Classification[J].Signal Processing: Image Communication, 2009, 3(2): 203 -232. 被引量:1
  • 3张龙飞,曹元大,周艺华,李剑.基于支持向量机元分类器的体育视频分类[J].北京理工大学学报,2006,26(1):41-44. 被引量:10
  • 4Yu-Fei Ma, Hong-Jiang Zhang. Motion Pattern based Video Classification and Retrieval [J].EURASIP Journal on Applied Signal Processing, 2003(2) : 199 - 208. 被引量:1
  • 5M Kalaiselvi Geetha, S Palanivel. A Novel Block Intensity Comparison Code for Video Classification and Retrieval [J]. Expert Systems with Applications, 2009(36) : 6415 - 6420. 被引量:1
  • 6Mark A. Kramer. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks[J]. Aiehe, 1991, (1): 233 - 243. 被引量:1
  • 7Platt J, Smola J, Bartlett P L. Probabilities for sv Machines [J].Cambridge, MA: Advances in Large Margin Classifiers, 2000, (15) : 61 - 74. 被引量:1
  • 8Rabiner L R, Juang B H. An Introduction to Hidden Markon Models[J]. IEEE ASSP Magazine, 1986, (23): 4- 16. 被引量:1
  • 9Yuan-Xiang Li, Chew Lim Tan. Contextual Post-processing Based on the Confusion Matrix in Offline Handwritten Chinese Script Recognition [J].Patten Recognition, 2004, (37) : 1901 - 1912. 被引量:1

二级参考文献17

共引文献14

同被引文献92

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部