摘要
在分离局部凸空间中考虑free disposal集的对偶性质,其中free disposal集是指与凸锥的代数和仍是其本身的集合.在E_1或E_2是free disposal集的条件下,证明了(E_1∩E_2)^+=E_1^++E_2^+和E_1^+∩E_2^+=(E_1+E_2)^+等对偶结果.
In this paper, we focus on some dual characterizations of free disposal sets in a separated locally convex space, in which, free disposal set means that its algebraic sum with a convex cone is still itself. Under the assumption that E1 or E2 is free disposal set, we proved some dual results, such as (El ∩E2)+ = E1+ +E2+, E1+∩ E2+ = (El +E2)+, etc.
出处
《运筹学学报》
CSCD
北大核心
2015年第4期107-113,共7页
Operations Research Transactions
基金
国家自然科学基金重点项目(No.11431004)
国家自然科学基金(No.11271391)
国家自然科学基金青年科学基金项目(Nos.11201511
11301571)
重庆市科委项目(cstc2014pt-sy00001)