期刊文献+

向量优化中Free Disposal集的某些对偶性质

Some dual characterizations of free disposal sets in vector optimization
下载PDF
导出
摘要 在分离局部凸空间中考虑free disposal集的对偶性质,其中free disposal集是指与凸锥的代数和仍是其本身的集合.在E_1或E_2是free disposal集的条件下,证明了(E_1∩E_2)^+=E_1^++E_2^+和E_1^+∩E_2^+=(E_1+E_2)^+等对偶结果. In this paper, we focus on some dual characterizations of free disposal sets in a separated locally convex space, in which, free disposal set means that its algebraic sum with a convex cone is still itself. Under the assumption that E1 or E2 is free disposal set, we proved some dual results, such as (El ∩E2)+ = E1+ +E2+, E1+∩ E2+ = (El +E2)+, etc.
出处 《运筹学学报》 CSCD 北大核心 2015年第4期107-113,共7页 Operations Research Transactions
基金 国家自然科学基金重点项目(No.11431004) 国家自然科学基金(No.11271391) 国家自然科学基金青年科学基金项目(Nos.11201511 11301571) 重庆市科委项目(cstc2014pt-sy00001)
关键词 向量优化 free disposal集 对偶集 vector optimization, free disposal set, dual set
  • 相关文献

参考文献16

  • 1Chicoo M, Mignanego F, Pusillo L, et al. Vector optimization problem via improvement sets [J]. Journal of Optimization Theory and Applications, 2011, 150(3): 516-529. 被引量:1
  • 2Gutierrez C, Jimenez B, Novo V. Improvement sets and vector optimization [J]. European Journal of Operational Research, 2012, 223(2): 304-311. 被引量:1
  • 3Gutierrez C, Jimenez B, Novo V. Optimality conditions for quasi-solutions of vector optimiza- tion problems [J]. Journal of Optimization Theory and Applications, 2013. DOI 10.1007/s10957- 013-0393-6. 被引量:1
  • 4Oppezzi P, Rossi A. Improvement sets and convergence of optimal points [J]. Journal of Opti- mization Theory and Applications, 2014. DOI 10.1007/s10957-014-0669-5. 被引量:1
  • 5Zhao K Q, Yang X M. A unified stability result with perturbations in vector optimization [J]. Optimization Letters, 2013, 7(8): 1913-1919. 被引量:1
  • 6Lalitha C S, Chatterjee P. Stability and scalarization in vector optimization using improvement sets [J]. Journal of Optimization Theory and Applications, 2015, 166(3): 825-843. 被引量:1
  • 7Zhao K Q, Yang X M. E-Benson proper efficiency in vector optimization [J]. Optimization, 2015, 64(4): 739-752. 被引量:1
  • 8Zhao K Q, Yang X M. E-Proper saddle points and E-proper duality in vector optimization with set-valued maps [J]. Taiwan Residents Journal of Mathematics, 2014, 18(2): 483-495. 被引量:1
  • 9Jahn J. Vector Optimization [M]. New York: Springer-Verlag, 2011. 被引量:1
  • 10Ansari Q H, Yao J C. Recent Developments in Vector Optimization [M]. Berlin: Springer, 2012. 被引量:1

二级参考文献9

  • 1Jahn J. Vector optimization: theory, applications and exten- sions[M]. Berlin : Springer, 2004. 被引量:1
  • 2Qiu J H. Dual characterization and scalarization for Benson proper efficiency[J]. SIAM Journal on Optimization, 2008, 19(1) :144-162. 被引量:1
  • 3Chiang Y. Characterizations for solidness of dual cones with applications[J]. Journal of Global Optimization, 2012,52 (1):79-94. 被引量:1
  • 4Chicoo M,Mignanego F,Pusillo L,et al. Vector optimiza- tion problem via improvement sets[J]. Journal of Optimi- zation Theory and Applications, 2011,150 (3): 516-529. 被引量:1
  • 5Gutierrez C,Jimenez B, Novo V. Improvement sets and vec- tor optimization[J]. European Journal of Operational Re- search, 2012,223 (2) : 304-311. 被引量:1
  • 6Zhao K Q,Yang X M. A unified stability result with per- turbations in vector optimization[J]. Optimization Letters, 2013,7 (8): 1913-1919. 被引量:1
  • 7Zhao K Q,Yang X M. E-Benson proper efficiency in vector optimization[J]. Optimization. 被引量:1
  • 8Roekafellar R T. Convex analysis[M]. New Jersey: Prince- ton University Press, 1972. 被引量:1
  • 9秦晨.向量优化有效点集非空的一个充分必要条件[J].重庆理工大学学报(自然科学),2013,27(11):117-119. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部