摘要
A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.
A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.
基金
The research was supported by the Natural Science Foundation of China