期刊文献+

一种基于多层联合分析的HTTP隧道木马检测方法 被引量:5

HTTP tunnel Trojan detection method based on multi-layer conjoint analysis
下载PDF
导出
摘要 针对现有的基于网络层或传输层的木马通信行为检测方法应用到HTTP隧道木马的检测中识别精度较低的问题,提出一种基于多层联合分析的HTTP隧道木马检测方法。从应用层、传输层和网络层三个层面提取HTTP会话过程中区分隧道木马通信和正常通信的行为统计特征,采用基于主动学习的SVM算法生成分类规则,建立检测系统。实验结果表明,基于多层联合分析的检测方法降低了已有方法的误报率和漏报率,并且引入主动学习方法有效减少了人工标记的样本数量,提高了基于通信行为分析的HTTP隧道木马检测方法的实用性。 According to that current Trojan communication behavior detection methods based on network layer or transport la- yer had poor recognition when they were applied to the detection of HTFP tunnel Trojan, this paper proposed an HTFP tunnel Trojan detection method based on multi-layer network data conjoint analysis. It first extracted behavior statistic characteristics to distinguish HTI'P tunnel Trojan communication and normal communication on network layer, transport layer and application layer. Then it created classification rules and established a detection system by using active learning SVM algorithm. Experi- mental results show that this method decreases the detection false positives and false negatives of current methods. It also effec- tively reduces the amount of artificial labeled samples when introduces active learning method, improves the practicability of tunnel Trojan detection methods based on the analysis of communication behavior.
出处 《计算机应用研究》 CSCD 北大核心 2016年第1期240-244,共5页 Application Research of Computers
基金 国家科技支撑计划资助项目(2012BAH47B01) 郑州市科技创新团队资助项目(10CXTD150) 上海市科研计划资助项目(13DZ1108800) 国家自然科学基金资助项目(61271252)
关键词 HTTP隧道木马 通信行为 联合分析 主动学习 分类 HTFP tunnel Trojan communication behavior conjoint analysis active learning classification
  • 相关文献

参考文献12

二级参考文献63

  • 1Lewis D,W Gale.A Sequential Algorithm for Training Text Classifiers[C].In:Proceeding of the Seventeenth Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, Spring-Verlag, 1994 : 3 - 12. 被引量:1
  • 2Simon Tong,Edward Chang.Support Vector Machine Active Learning for Image Retrieval[C].In:Proceedings of the ninth ACM international conference on Multimedia, Ottawa,Canada, 2001;09:107-118. 被引量:1
  • 3S Tong,D Koller.Support Vector Machine Active Leaming with Applications to Text Classification[J].Machine Learning Research,2001;2(11):45-66. 被引量:1
  • 4Burges C J.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery, 199$ ; (2) : 121-167. 被引量:1
  • 5SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:89
  • 6Vapnik V. The Nature of Statistical Learning Theory[M].New York;Springer Verlag,1995. 被引量:1
  • 7Vapnik V. Statistical learning theory[J].Chichester,UK:Wile,1998. 被引量:1
  • 8VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 9Bykova M,Ostermann S,Tjaden B.Detecting network intrusions via a statistical analysis of network packet characteristics//Proceedings of the 33rd Southeastern Symposium on System Theory.Ohio,Athens,2001:309-314 被引量:1
  • 10Lee W,Stolfo S J.A framework for constructing features and models for intrusion detection systems.ACM Transactions on Information and System Security(TISSEC),2000,3(4):227-261 被引量:1

共引文献81

同被引文献41

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部