期刊文献+

基于支持向量机的激光焊接过程质量监测 被引量:2

Quality monitoring of laser welding process by using support vector machine
下载PDF
导出
摘要 提出了一种基于支持向量机的激光焊接质量监测方法.在监测系统中,首先利用光、声传感器获取焊接过程产生的各种信号,然后利用Gabor变换提取出特征向量,最后利用支持向量机对数据进行融合以判断焊缝是否达到质量要求.实验结果验证该方法的分类正确率可达93%. A laser welding quality monitoring method is proposed, based on support vector machine. At first optical and sound sensors were used to acquire the various signals in the process of laser welding, then Gabor transformation was applied to extract the feature vector, and finally support vector machine was used for data fusion to judge whether the quality requirements of welding seams are meet. The eexperiments results show that the accuracy of this classification method is up to 93 %.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期62-63,共2页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 支持向量机 激光焊接 特征提取 质量监测 support vector machine laser welding feature extraction quality monitoring
  • 相关文献

参考文献10

二级参考文献54

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254. 被引量:1
  • 3Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201. 被引量:1
  • 4Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319. 被引量:1
  • 5Vladimir N Vapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:25
  • 6Cristianini N, Shawe-Taylor J. An Introduction to Support Vector machines[ M]. Cambridge, UK : Cambridge University Press, 2000. 被引量:1
  • 7Muller K-R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001,12(2) : 181 - 201. 被引量:1
  • 8Vapnik V N. The Nature of Statistical Learning Theory[M]. NY. Springer, 1995. 被引量:1
  • 9Scholkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-dimensional Distribution[ R]. Technical Report MSR-TR-99-87, Microsoft Research, 1999. 被引量:1
  • 10Tax D, Duin R. Data Domain Description by Support Vectors[A]. In. Verleysen M.Ed. D. Proc. ESANN[C]. Brussels:Facto Press, 1999, 251 - 256. 被引量:1

共引文献2347

同被引文献28

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部