期刊文献+

基于支持向量机的激光焊接过程的非线性辨识 被引量:2

NONLINEAR IDENTIFICATION OF ARC WELDING PROCESS BASED ON SUPPORT VECTOR MACHINE
下载PDF
导出
摘要 针对激光焊接过程非线性系统建模困难的问题,研究基于支持向量机的非线性系统回归建模方法。支持向量机由核函数与训练集完全刻画,进一步提高支持向量机性能的关键是针对给定的系统设计恰当的核函数。用改进的核函数,对具有典型非线性特性的焊接过程进行辨识。仿真结果验证了该方法的有效性。 To solve the problem that the nonlinear system of laser welding process is difficult in modelling, in this paper it studied the modelling of nonlinear system regression based on support vector machine. SVM is completely characterized by kernel function and training set, the key to further enhance the performance of support vector machine is to choose appropriate kernel function for the given system. An improved kernel function was applied in the identification of a welding process with typical nonlinear character. The simulation results show that the method is effective.
作者 毛剑 刘玉生
出处 《计算机应用与软件》 CSCD 2009年第1期16-17,43,共3页 Computer Applications and Software
基金 国家自然科学基金国际合作项目(60540420641)
关键词 支持向量机 核函数 非线性系统 焊接过程 辨识 Support vector machine Kernel function Nonlinear system Welding process Identification
  • 相关文献

参考文献7

二级参考文献68

  • 1白洪亮,娄正良,邹明福,刘昌平.复杂背景下基于形态学的车牌识别系统[J].公路交通科技,2004,21(10):117-120. 被引量:13
  • 2[1]P Ge and M Jouaneh. Tracking control of a piezoceramic actuator[J]. IEEE Trans. Contr. Syst. Technol. , May 1996, 4:209-216. 被引量:1
  • 3[2]Chih Lyang Hwang, Chau Jan, Ye-Hwa Chen. Piezomechanic using intelligent variable-structure control[J]. IEEE trans. industrial electronic, Feb. 2001, 48(1):47-59. 被引量:1
  • 4[3]R B Gorbet.Control of hysteretic systems with preisach representations[D].Ph.D dissertation,University of Waterloo,Canada,1997. 被引量:1
  • 5[4]A J Calise and N Hovakimyan. Adaptive output feedback control of nonlinear system using neural networks[J]. Automatica, 2001, 37: 1201-1211. 被引量:1
  • 6[5]B S Kim and A J Calis.Nonlinear flight control using neural networks[J].Journal of Guidance,Control and dynamics,2001,20 (1). 被引量:1
  • 7[6]R R Selmic, F L Lewis. Neural net backlash compensation with Hebbian tuning using dynamic inversion[J]. Automatica, 2001, 37:1269-1277. 被引量:1
  • 8Cherkassky V, Mulier F. Learning from data: concepts, theory and methods [M]. New York: John Wiley and Sons,1998. 被引量:1
  • 9Sjoberg J. Zhang Q. Ljung L. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica. 1995.31(12) :1691- 1724. 被引量:1
  • 10Vapnik V. The nature of statistical learning theory[M]. NewYork :Springer-Verlag, 1995. 被引量:1

共引文献128

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部