期刊文献+

改进的核相关滤波器目标跟踪算法 被引量:24

Improved target tracking algorithm based on kernelized correlation filter
下载PDF
导出
摘要 针对传统单目标的核相关滤波器(KCF)跟踪算法在目标尺度变化的跟踪中存在的问题,提出了一种基于相关滤波器(CF)和尺度金字塔的多尺度核相关滤波器(SKCF)跟踪算法。首先通过传统KCF跟踪算法中分类器的响应计算当前目标是否受到遮挡,在未受到遮挡的情况下,对当前目标建立尺度金字塔;然后通过相关滤波器求取尺度金字塔的最大响应得到当前目标尺度信息;最后使用新目标图像为训练样本更新目标的外观模型和尺度模型。与核化的结构化输出(Struck)算法、KCF算法、跟踪-学习-检测(TLD)算法和多示例学习(MIL)算法进行对比,实验结果表明,所提出的多尺度核相关滤波器(SKCF)跟踪算法在五种算法中精确度和重合度都取到最高值。所提算法能够广泛应用于目标跟踪领域,对目标进行准确的跟踪。 Focusing on the issue that the Kernelized Correlation Filter( KCF) tracking algorithm has poor performance in handling scale-variant target, a multi-scale tracking algorithm called Scale-KCF( SKCF) based on Correlation Filter( CF) and multi-scale image pyramid was proposed. Firstly, the occlusion status of the target was got through the response of the conventional KCF algorithm' s classifier. The multi-scale image pyramid was built for the occluded target. Secondly, the scale information of the target was obtained by calculating the correlation filter ' s maximum response on the multi-scale image pyramid. Finally, the appearance model and the scale model of the target were updated with the fresh target. The experimental results on comparison with some state-of-the-art trackers such as Structured Output tracking with kernel( Struck), KCF,Tracking-Learning-Detection( TLD) and Multiple Instance Learning( MIL) demonstrate that the proposed tracker of SKCF achieves the best accuracy and overlap rate than other algorithms. Meanwhile, the proposed tracker can be widely used in target tracking and achieve high precise target tracking.
出处 《计算机应用》 CSCD 北大核心 2015年第12期3550-3554,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61402046)
关键词 目标跟踪 多尺度 相关滤波器 判别模型 遮挡检测 target tracking multi-scale Correlation Filter(CF) discriminative model occlusion detection
  • 相关文献

参考文献17

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2HARE S, SAFFARI A, TORR P H S. Structured output tracking with kernels [ C] // Proceedings of the 2011 IEEE International Con- ference on Computer Vision. Piscataway: IEEE, 2011:263 -270. 被引量:1
  • 3KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detec- tion [ J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2012, 34(7) : 1409 - 1422. 被引量:1
  • 4BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online nmltiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8) : 1619 - 1632. 被引量:1
  • 5ZHANG K, ZHANG L, YANG M H. Real-time compressive track- ing [ M]// ECCV 2012: Proceedings of the 12th European Confer- ence on Computer Vision, LNCS 7574. Berlin: Springer, 2012: 64 - 877. 被引量:1
  • 6BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual ob- ject tracking using adaptive correlation filters [ C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE, 2010:2544-2550. 被引量:1
  • 7ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spatio- temporal context learning [ EB/OL]. [ 2015- 05- 01 ]. http://azad- project, ir/wp-content/uploads/2014/07/Fast -Tracking-via-Spatio-Tem- poral - Context - Learning. pdf. 被引量:1
  • 8HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels [ C]//EC- CV 2012: Proceedings of 12th European Conference on Computer Vision, LNCS7575. Berlin: Springer, 2012:702-715. 被引量:1
  • 9DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [ C ]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway; IEEE, 2014: 1090- 1097. 被引量:1
  • 10van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning col- or names for real-world applications [ J]. IEEE Transactions on Im- age Processing, 2009, 18(7): 1512-1523. 被引量:1

二级参考文献6

共引文献253

同被引文献133

引证文献24

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部