期刊文献+

基于MapReduce的高效用序列模式挖掘算法 被引量:2

High Utility Sequential Pattern Mining Algorithm Based on Map Reduce
下载PDF
导出
摘要 由于数据规模的快速增长,高效用序列模式挖掘算法效率严重下降.针对这种情况,提出基于Map Reduce的高效用序列模式挖掘算法Hus Ma R.算法基于Map Reduce框架,使用效用矩阵高效地生成候选项;使用随机映射策略均衡计算资源;使用基于领域的剪枝策略来防止组合爆炸.实验结果表明,在大规模数据集下,算法取得了较高的并行效率. Because of the rapid growth of data, the high utility sequential pattern mining algorithms' efficiency decreases seriously. In view of this, we propose a high utility sequential pattern mining algorithm based on MapReduce, namely HusMaR. This algorithm is based on MapReduce, which using the utility matrix to generate candidate efficiently, random mapping strategy to balance of computing resources and field-based pruning strategy to prevent an explosion. Experimental results show that in the large scale of data, the algorithm achieves a high parallel efficiency.
出处 《计算机系统应用》 2015年第12期228-232,共5页 Computer Systems & Applications
关键词 序列模式 MAP REDUCE 剪枝策略 高效用序列模式挖掘 随机策略 sequential pattern MapReduce pruning strategy high utility sequential pattern mining random strategy
  • 相关文献

参考文献12

  • 1Zaki MJ. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning, 2001, 42(1-2): 31-60. 被引量:1
  • 2Pei J, Pinto H, Chen Q, et al. Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. IEEE 29th International Conference on Data Engineering (ICDE). IEEE Computer Society, 2001. 被引量:1
  • 3Ayres J, Flanniek J, Gehrke J, et al. Sequential pattern mining using a bitmap representation. Proe. of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002: 429-435. 被引量:1
  • 4Yin J, Zheng Z, Cao L. Uspan: an efficient algorithm for mining high utility sequential patterns. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 660-668. 被引量:1
  • 5Shie BE, Hsiao HF, Tseng VS, et al. Mining high utility mobile sequential patterns in mobile commerce environments Database Systems for Advanced Applications. Springer Berlin Heidelberg, 2011: 224-238. 被引量:1
  • 6Ahmed CF, Tanbeer SK, Jeong BS. A novel approach for mining high-utility sequential patterns in sequence databases. ETRI Journal, 2010, 32(5):676-686. 被引量:1
  • 7Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008, 51(1): 107-113. 被引量:1
  • 8Wei Y, Liu D, Duan L. Distributed PrefixSpan algorithm based on MapReduce. 2012 International Symposium on Information Technology in Medicine and Education (ITME). IEEE, 2012, 2: 901-904. 被引量:1
  • 9Chen CC, Tseng CY, Chen MS. Highly scalable sequential pattern mining based on MapReduce model on the cloud. 2013 IEEE International Congress on Big Data. IEEE, 2013: 310-317. 被引量:1
  • 10Agrawal R, Srikant R. Mining sequential patterns. Proc. of the llth Int. Conf. on Data Engineering, 1995. IEEE, 1995: 3-14. 被引量:1

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部