期刊文献+

使用随机策略进行运动目标检测方法研究

Research on moving objects detection by using random strategy
下载PDF
导出
摘要 提出一种基于随机策略进行运动目标检测的方法。方法的主要创新点:(1)利用视频序列第1帧完成背景模型的初始化;(2)建立特定的运动点与背景点判定规则;(3)背景模型更新过程中不仅更新当前像素点的样本序列,同时更新其邻域的样本序列。在背景模型初始化与更新过程中,使用随机策略进行样本序列的更新。该方法利用了像素点的光谱、空间和时间特征,从而提高了检测效果。通过与滑动平均算法、改进的混合高斯模型算法进行实验比较,结果证明该方法是一种运算量小,准确率高,简单高效的运动目标检测方法。 A method for finding moving objects by using random strategy is discussed. There are several innovations: firstly, the background model is initialized by the first frame of the video sequence; secondly, a unique decision rule is established to dis-criminate the moving pixels and the background pixels; thirdly, when updating the background model, not only updates the sam- ple sequence of the current pixel, but also updates the neighborhood' s sample sequence. The random strategy is used in the pro-cess of initialization and updating. The spectral, spatial and the temporal features of pixels are exploited. The proposed method, compared with the running average method and the improved Gaussian mixture model method, is proved to be simple but effi-cient with lower computational cost and higher accuracy.
出处 《计算机工程与应用》 CSCD 2013年第13期128-132,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60835004) 国家高技术研究发展计划(863)(No.2007AA04Z244)
关键词 样本选择 判定规则 背景更新 随机策略 sample selecting decision rule background updating random strategy
  • 相关文献

参考文献10

  • 1Cben T P, Haussecker H.Computer vision workload analysis: case study of video surveillance systems[I].Intel Technology Journal,2005,9(2): 109-118. 被引量:1
  • 2Cucchiara R, Grana C, Piccardi M, et al.Detecting moving objects, ghosts, and shadows in video streams[J].1 EEE Trans?actions on Pattern Analysis and Machine Intelligence, 2003, 25: 1337-1342. 被引量:1
  • 3Friedman N . Russell S.lmage segmentation in video sequences: a probabilistic approach[C].lProceedings of tbe 13th Confer?ence on Uncertainty in Artificial Intelligence, 1997. 被引量:1
  • 4Stauffer C, Grimson W E L.Adaptive background mixture models for real-time tracking[C].lProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog?nition,1999. 被引量:1
  • 5Stauffer C. Grimson W E L.Learning patterns of activity using real-time tracking[J].lEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8) :747-757. 被引量:1
  • 6Kaewtrakulpong P, Bowden R.An improved adaptive back?ground mixture model for real-time tracking with shadow detection[C]IIProceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems, 200 1. 被引量:1
  • 7Lee D S.Effective gaussian mixture learning for video back?ground subtraction[I].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27( 5) : 827-832. 被引量:1
  • 8Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]IIProceedings of the 17th Interna?tional Conference on Pattern Recognition, 2004,2: 28-31. 被引量:1
  • 9Li L, Huang W, Gu I Y, et al.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Trans?actions on Image Processing,2004, 13( 11): 1459-1472. 被引量:1
  • 10Piccardi M .Background subtraction techniques: a review[C]11 Proceedings of the IEEE International Conference on Sys?tems, Man and Cybernetics, 2004. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部