期刊文献+

Morphology characterization of periclase–hercynite refractories by reaction sintering 被引量:5

Morphology characterization of periclase–hercynite refractories by reaction sintering
下载PDF
导出
摘要 A periclase?hercynite brick was prepared via reaction sintering at 1600℃for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe^2+, Fe^3+ and Al^3+ ions in hercynite crystals migrate and react with periclase to form(Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg^2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg^2+ migration leads to the formation of(Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure. A periclase?hercynite brick was prepared via reaction sintering at 1600℃for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe^2+, Fe^3+ and Al^3+ ions in hercynite crystals migrate and react with periclase to form(Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg^2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg^2+ migration leads to the formation of(Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1219-1224,共6页 矿物冶金与材料学报(英文版)
基金 the National Nature Science Foundation of China (No. 51172021) the National Science-Technology Support Plan Projects of China (No. 2013BAF09B01) the Fundamental Research Funds for the Central Universities (No. FRF-SD-13-006A)
关键词 refractories periclase hercynite sintering morphology diffusion refractories periclase hercynite sintering morphology diffusion
  • 相关文献

参考文献1

二级参考文献4

同被引文献82

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部