期刊文献+

基于HHT的低压交流故障电弧检测方法研究 被引量:7

Research of HHT Based Identification Method for Low Voltage Arc Fault
下载PDF
导出
摘要 为了克服现有低压交流串联故障电弧检测算法中,需要线下训练样本仅适用于特定条件下负载的缺点,找到一种多负载适用、运行可靠、便于嵌入式系统执行的检测算法,提出了基于特征模态分量半周期能量差异的检测算法。用EMD分析提取正常电弧和故障电弧电流特征分量,经Hilbert变换得到特征分量的瞬时幅值分布,通过特征IMF的半周期能量与参考值的相对大小差异,构造故障识别标志量,实现故障电弧的判断。采集不同类型负载电流数据进行仿真,结果说明了方法的有效性、通用性。 Most of the existing low voltage arc fauh diagnosis method have disadvantages such as needing offline training of samples, available for only conditioned loads. To overcome these defects and find a multi-load available,response reliable and embedded system friendly detection method, this paper proposed an identification algorithm based on the half-cycle energy of feature mode function from empirical mode decomposition (EMD). Hilbert transform was applied to work out the instantaneous amplitude distribution of the feature component of arcing current and that of normal. Then compute feature component' s half-cycle energy and regard the relative magnitude with a predefined threshold as the criterion. Laboratory tests prove the effectiveness and universality of the method with different kinds of loads.
出处 《电器与能效管理技术》 2015年第21期1-7,17,共8页 Electrical & Energy Management Technology
关键词 低压故障电弧 固有模态函数 HILBERT变换 检测方法 low voltage arc fault intrinsic mode function Hilbert transform detection method
  • 相关文献

参考文献12

  • 1杨艺,董爱华,付永丽.低压故障电弧检测概述[J].低压电器,2009(5):1-4. 被引量:61
  • 2ZHANG S W, ZHANG F, LIU P, et al. Identification of low voltage AC series arc faults by using Kalman filtering algorithm[ J]. Elektronika ir Elektrotechnika, 2014,20(5 ) :51-56. 被引量:1
  • 3刘鹏,张峰,张士文.基于神经网络的故障电弧检测装置的研究[J].低压电器,2013(17):1-6. 被引量:7
  • 4罗雷,刘晖.新型家用电弧故障断路器(AFCI)的开发[J].建筑电气,2006,25(2):11-16. 被引量:23
  • 5HADZIEFENDIC N, KOSTIC M, RADAKOVIC Z. Detection of series arcing in low-voltage electrical installations [ J ]. European Transactions on Electrical Power,2009,19( 3 ) :423-432. 被引量:1
  • 6KOZIY K, BEI G, ASLAKSON J. A low-cost power- quality meter with series arc-fault detection capability for smart grid [ J ]. IEEE Transactions on Power Delivery,2013,28 (3) : 1584-1591. 被引量:1
  • 7GU H Y, ZHANG F, WANG Z J, et al. Identification method for low-voltage arc fault based on the loose combination of wavelet transformation and neural network [ C] //Proceedings of 2012 IEEE Power Engineering and Automation Conference ( PEAM ), Wuhan, IEEE, 2012 : 1-4. 被引量:1
  • 8KUMPULAINEN L, HUSSAIN G A, LEHTONEN M, et al. Preemptive arc fault detection techniques inswitchgear and controlgear [ J ]. IEEE Transactions on Industry Applications ,2013,49 (4) : 1911-1919. 被引量:1
  • 9徐佳,麻凤海著..希尔伯特-黄变换理论及其在重大工程变形监测中的应用[M].北京:煤炭工业出版社,2013:124.
  • 10杨永锋,吴亚锋著..经验模态分解在振动分析中的应用[M].北京:国防工业出版社,2013:172.

二级参考文献47

共引文献156

同被引文献78

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部