期刊文献+

基于同步平均与倒频谱编辑的齿轮箱滚动轴承故障特征量提取 被引量:17

Gear-box rolling bearings' fault features extraction based on cepstrum editing and time domain synchronous average
下载PDF
导出
摘要 在齿轮箱振动信号中,由于滚动轴承早期故障信号相对较弱,传统的齿轮箱滚动轴承故障诊断方法通常难以有效地提取轴承故障信息。为实现滚动轴承故障特征的准确提取,本文提出了一种基于同步平均和倒频谱编辑的齿轮箱滚动轴承故障分离诊断方法。所提方法首先利用时域同步平均实现齿轮成分增强,并通过倒频谱获得齿轮成分对应的倒频谱线准确位置,然后对原信号的倒频谱进行编辑实现对其中齿轮成分的或削弱以突出信号中的滚动轴承故障特征,提高齿轮箱滚动轴承故障诊断的准确性。仿真和试验结果验证了该方法的有效性。 In a gearbox,as rolling bearing fault signals are relatively weaker,the traditional rolling bearing fault diagnosis method is hard to extract bearing fault information from the gear-box vibration signals.In order to achieve the accurate extraction of bearing fault features,a method for bearing fault diagnosis based on cepstrum editing and time domain synchronous average was proposed here.With the proposed method,firstly the time domain synchronous average technology was used to enhance the gear-box vibration signals'components.Then,the correct position of cepstrum line corresponding to each component was obtained using the cepstrum analysis.Finally,the vibration components in its original signals were weakened with the cepstrum editing to highlight rolling bearings'fault features mixed in the original vibration signals and improve the correctness of gear-box rolling bearings'fault diagnosis.Simulation and test results verified the effectiveness of this method.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第21期205-209,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51365023)
关键词 滚动轴承 故障诊断 倒频谱 时域同步平均 包络分析 rolling bearing fault diagnosis cepstrum time domain synchronous average envelope analysis
  • 相关文献

参考文献9

二级参考文献30

  • 1杨炯明,秦树人,季忠.旋转机械阶比分析技术中阶比采样实现方式的研究[J].中国机械工程,2005,16(3):249-253. 被引量:36
  • 2李辉,郑海起,潘宏侠.基于阶次跟踪和角域平均的齿轮裂纹故障诊断[J].中北大学学报(自然科学版),2007,28(1):27-31. 被引量:10
  • 3Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution com- bined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007,21 : 2616-2633. 被引量:1
  • 4Combet F, Gelman L. Optimal filtering of gear sig- nals for early damage detection based on the spectral kurtosis[J].Mechanical Systems and Signal Processing, 2009,23:652-668. 被引量:1
  • 5Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets[J].Mechanical Systems and Signal Processing, 2002, 26 (4):677-694. 被引量:1
  • 6Antoni J. The spectral kurtosis: a useful tool for characterising nonstationary signals[J].Mechanical Systems and Signal Processing, 2006,20(2) : 282-307. 被引量:1
  • 7Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J].Mechanical Systems and Signal Processing, 2006,20 (2) :308-331. 被引量:1
  • 8Sawalhi N. Diagnostics, prognostics and fault simulation for rolling element bearings[D]. [S. 1.], The University of New South Wales, 2007. 被引量:1
  • 9陈进.机械设备振动监测与故障诊断[M],上海:上海交通大学出版社,1997:98-102. 被引量:3
  • 10Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis [ J ]. Mechanical Systems and Signal Processing, 2007, 21 (6):2616 - 2633. 被引量:1

共引文献76

同被引文献178

引证文献17

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部