期刊文献+

组合降采样极限学习机

Ensemble of under-sampled ELMs
下载PDF
导出
摘要 设计了一种针对不平衡数据集的学习机,即组合降采样极限学习机(EUS ELMs)。当训练数据集不平衡时,普通分类器对少数样本的分类敏感性较低,而给予多数样本过度关注。针对这种问题,将组合降采样结构与极限学习机(ELM)结合起来,形成一种新的组合学习机。该学习机继承了组合降采样结构对样本选择的依赖性小的优点,和极限学习机分类效率高、耗时短的优势,而且可以通过不同的参数设置控制对少数样本的关注度,根据使用者需求获得不同分类效果。 This paper presents the design of a learning machine targeting data imbalance. When the number of patterns from a class is much larger than that from the other class, standard classifiers are likely to be overwhelmed by the large class while ignoring the small one. It often degrades the classification performance. This paper, to address this problem, proposes an ensemble of under-sampled ELMs or EUS ELMs. The ensemble scheme can lower the variation of sample selection and the use of ELM can enhance the classification efficiency significantly. In addition, by adjusting the parameters of the learning machine, the user can alter the emphasis on different classes.
出处 《信息技术》 2015年第11期159-162,共4页 Information Technology
关键词 不平衡数据集 分类器 组合降采样 极限学习机 class imbalance learning machine ensemble scheme ELM
  • 相关文献

参考文献10

  • 1李勇,刘战东,张海军.不平衡数据的集成分类算法综述[J].计算机应用研究,2014,31(5):1287-1291. 被引量:73
  • 2Nitesh V Chawla,Kevin W Bowyer,Lawrence O Hall,et al.SMOTE:Synthetic Minority Over-sampling Technique[J].Journal of Artificial Intelligence Research,2002:321-357. 被引量:1
  • 3李江,金辉,刘伟.基于分形SMOTE重采样集成算法圈定区域化探异常[J].计算机应用研究,2012,29(10):3744-3747. 被引量:3
  • 4Pilsung Kang,Sungzoon Cho.Ensemble of Under-Sampled SVMs for Data Imbalance Problems[C].International Conference on Neural Information Processing,2006. 被引量:1
  • 5蔡磊,程国建,潘华贤.极限学习机在岩性识别中的应用[J].计算机工程与设计,2010,31(9):2010-2012. 被引量:33
  • 6Guang-Bin Huang,Lei Chen,Chee-Kheong Siew.Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,2006,17(4):879-892. 被引量:1
  • 7王智慧..BP神经网络和ELM算法研究[D].中国计量学院,2012:
  • 8Heath M,Bowyer K,Kopans D.The Digital Database for Screening Mammography[C]∥Proceedings of the Fifth International Workshop on Digital Mammography,Medical Physics Publishing,2001:212-218. 被引量:1
  • 9Cascio D,Fauci F,Magro R,et.al.,Mammogram Segmentation by Contour Searching and Mass Lesions Classification With Neural Network[J].IEEE TRANSACTIONS ON NUCLEAR SCIENCE,2006,53(5):2827-2833. 被引量:1
  • 10Pradeep N,Girisha H,Sreepathi B,et al.Feature Extraction of Mammograms[J].International Journal of Bioinformatics Research,2012,4(1):241-244. 被引量:1

二级参考文献67

  • 1李新虎.基于不同测井曲线参数集的支持向量机岩性识别对比[J].煤田地质与勘探,2007,35(3):72-76. 被引量:14
  • 2陈华,邓少贵,范宜仁.基于LS-SVM的测井物性参数的预测方法[J].计算机工程与应用,2007,43(23):208-210. 被引量:10
  • 3Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1-3):489-501. 被引量:1
  • 4Huang Guang-Bin,Zhu Qin-Yu,Siew Chee-Kheong.Extreme learning machine:a new learning scheme of feedforward neural networks[C].Budapest,Hungary:Proceedings of International Joint Conference on Neural Networks,2004. 被引量:1
  • 5Fan R E,Chen P H,Lin C J.Working set selection using the second order information for training SVM[J].Journal of Machine Learning Research,2005(6):1889-1918. 被引量:1
  • 6Li M B,Huang G B,Saratchandran P,et al.Fully complex extreme learning machine[J].Neurocomputing,2005,68:306-314. 被引量:1
  • 7PROBOST F. Machine learning from imbalanced data sets 101 [C] I I Proc of AAAI Workshop on Imbalanced Data Sets. 2000. 被引量:1
  • 8CHAWLA N V, JAPKOWICZ N, KOTCA A. Editorial: special issue on learning from imbalanced data sets [ J]. SIGKDD Explorations, 2004,6(1) :1-6. 被引量:1
  • 9CHEN Lei-chen, CAl Zhi-hua, CHEN Lu, et al. A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets [ C ] IIProc of the 3 rd International Conference on Knowledge Discovery and Data Mining. 2010: 81- 85. 被引量:1
  • 10CHAWLA N V, BOWYER K W, HALL L 0, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Articial Intelligence Research ,2002 ,16(1) :321-357. 被引量:1

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部