期刊文献+

多模型标签多伯努利机动目标跟踪算法 被引量:12

Multiple model labeled multi-Bernoulli filter for maneuvering target tracking
下载PDF
导出
摘要 针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。 For the problem that the standard labeled multi-Bernoulli (LMB) filter only considers the single motion model case, a multiple model LMB (MM-LMB) filter for maneuvering target tracking is proposed. By introducing the jump Markov (JM) system to the LMB method, the extended recursion formulations are presen- ted, and the sequential Monte Carlo implementation of the proposed method is given. Simulations show that the MM-LMB filter can track multiple maneuvering targets effectively, and has higher tracking accuracy than the multiple model probability hypothesis density (MM-PHD) filter and the multiple model cardinality balanced multi-target multi-Bernoulli (MM-CBMeMBer) filter in complex detection environment. The calculation cost of the proposed method is lower than MM-PHD and MM-CBMeMBer when the targets are not closed, while grows faster than the compared algorithms when the targets gather together.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2683-2688,共6页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2014AAXXX4061)资助课题
关键词 多目标跟踪 机动目标 标签多伯努利 序贯蒙特卡罗 multi-target tracking maneuvering target labeled multi-Bernoulli (LMB) sequential Monte Carlo
  • 相关文献

参考文献16

  • 1Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 2003, 39(4): 1152- 1178. 被引量:1
  • 2Mahler R. PHD filters of higher order in target number[J]. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (4) : 1523 - 1543. 被引量:1
  • 3Mahler R. Statistical multisource multitarget information fu sionEM~. Boston: Arteeh House, 2007. 被引量:1
  • 4钟茜怡,姬红兵,欧阳成.基于修正贝努利滤波的被动多目标跟踪算法[J].系统工程与电子技术,2012,34(8):1549-1554. 被引量:1
  • 5Mahler R. "Statistics 102" for multisource-multitarget detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3)~ 376-389. 被引量:1
  • 6Vo B T, Vo g N, Cantoni A. The cardinality balanced multi- target multi-Bernoulli filter and its implementations[J]. IEEE Trans. on Signal Processing, 2009, 57(2) : 409 - 423. 被引量:1
  • 7Vo B T, Vo B N. Labeled random finite sets and multi object conjugate priorsEJ3. IEEE Trans. on Signal Processing, 2013, 61(13) : 3460 - 3475. 被引量:1
  • 8Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi target tracking filter~J3. IEEE Trans. on Signal Processing, 2014, 62(24) : 6554 - 6567. 被引量:1
  • 9Reuter S, Vo B T, Vo B N, et al. The labeled multkBemoulli filter[J]. IEEE Trans. on Signal Processing, 2014,62 (12) : 3246 - 3260. 被引量:1
  • 10Punithakumar K, Kirubarajan T, Sinha A. Multiple model multi Bernoulli filters for maneuvering targets[J]. IEEE Trans. on Aero space and Electronic Systems, 2008,44 (1) : 87 - 98. 被引量:1

二级参考文献37

  • 1McGinnity S,Irwin G W.Multiple model bootstrap fil-ter for maneuvering target tracking.IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):1006-1012. 被引量:1
  • 2Gordon N J,Maskell S,Kirubarajan T.Efficient particle fil-ters for joint tracking and classification.In:Proceedings of the Signal and Data Processing of Small Targets.Orlando,USA:SPIE,2002.439-449. 被引量:1
  • 3Pollard E,Pannetier B,Rombaut M.Hybrid algorithms for multitarget tracking using MHT and GM-CPHD.IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):832-847. 被引量:1
  • 4Mahler R.Multitarget Bayes filtering via first-order multi-target moments.IEEE Transactions on Aerospace and Elec-tronic Systems,2003,39(4):1152-1178. 被引量:1
  • 5Vo B N,Ma W K.The Gaussian mixture probability hy-pothesis density filter.IEEE Transactions on Signal Pro-cessing,2006,54 (11):4091-4104. 被引量:1
  • 6Li W,Jia Y M.Gaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approxima-tion.Signal Processing,2011,91(4):1036-1042. 被引量:1
  • 7Liu W F,Han C Z,Lian F,Zhu H Y.Multitarget state ex-traction for the PHD filter using MCMC approach.IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):864-883. 被引量:1
  • 8Pasha S A,Vo B N,Tuan H D,Ma W K.A Gaussian mixture PHD filter for jump Markov system models.IEEE Transac-tions on Aerospace and Electronic Systems,2009,45(3):919-936. 被引量:1
  • 9Clark D,Vo B N.Convergence analysis of the Gaussian mix-ture PHD filter.IEEE Transactions on Signal Processing,2007,55 (4):1204-1212. 被引量:1
  • 10Punithakumar K,Kirubarajan T,Sinha A.Multiple-model probability hypothesis density filter for tracking maneuver-ing targets.IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):87-98. 被引量:1

共引文献21

同被引文献31

引证文献12

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部