期刊文献+

基于机器视觉的客运车辆危险行驶状态辨识技术研究 被引量:1

Identification of the Dangerous Driving Status for Passenger Vehicle Based on Machine Vision
下载PDF
导出
摘要 为了提高客运车辆危险驾驶状态的辨识效能,提出利用机器视觉辨识危险驾驶行为。使用车载CCD实时采集路面图像,依据图像处理算法检测车道标识线的位置以及本车与前方目标车辆的实时距离,建立了车辆横向偏航辨识模型和车辆纵向危险行驶状态辨识模型;结合所建模型的辨识结果,确定预警方案。实车试验结果表明,所建模型能有效辨识车辆横向偏航和纵向跟车过近危险行驶行为,可用来降低潜在的危险驾驶行为,提高车辆在途行驶安全性。 In order to improve the identification efficiency of dangerous driving status for passenger vehicle,an algorithm to identify dangerous driving behavior by using machine vision was proposed.Vehicle-mounted CCD was used to collect the real time digital road image.Based on the lane line detection,real time distance between host vehicle and preceding vehicle with the image processing algorithm,the vehicle lateral lane departure identification model and the longitudinal dangerous driving status identification model were built.Combined with the identification result of the related model,the warning method was selected.The experimental result shows that the model can effectively identify the lateral lane departure and the longitudinal dangerous driving behavior,and can reduce the potential dangerous driving behavior,improve the vehicle safety during the transportation.
出处 《汽车实用技术》 2015年第11期20-22,共3页 Automobile Applied Technology
基金 国家自然科学基金面上项目(51278062)
关键词 机器视觉 横向偏航 纵向危险行驶状态 辨识 Machine vision lateral departure longitudinal dangerous driving status identification
  • 相关文献

参考文献7

二级参考文献16

  • 1王荣本,游峰,崔高健,余天宏.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):179-182. 被引量:40
  • 2林广宇,魏朗.基于数字图像技术的汽车行驶轨迹状态识别[J].交通运输工程学报,2006,6(3):114-117. 被引量:5
  • 3康文静,丁雪梅,崔继文,敖磊.基于改进Hough变换的直线图形快速提取算法[J].光电工程,2007,34(3):105-108. 被引量:35
  • 4Petersson L,Fletcher L,Zelinsky A.A framework for driver-in-the- loop driver assistance systems[C]//Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems,Vienna, Austria, 2005 : 771-776. 被引量:1
  • 5Huh K,Park J,Hwang J,et al.A stereo vision-based obstacle detection system in vehicles [J].Optics and Lasers in Engineering, 2008,46( 1 ) : 168-178. 被引量:1
  • 6Ma B, Lankshmanan S, Hero A. Road and lane edge detection with multisensor fusion methods[ C]//IEEE International Conference on Image Processing. Kobe: [s. n], 1999:686- 690. 被引量:1
  • 7BreueI T M. Model based recognition using pruned correspondenee search[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Maul: [s. n. ], 1991:257 - 262. 被引量:1
  • 8Takahashi A, Ninomiya Y. Model-based lane recognition[ C]// Proceedings of the IEEE Intelligent Vehicles Symposium. Maui : [s.n. ], 1996:201-206. 被引量:1
  • 9Wang Yue, Shen Dinggang, Teoh E K. Lane detection using spline model[J]. Pattern Recognition Letters,2000,21 (8):677. 被引量:1
  • 10Kluge K, Lankshmanan S. A deformable-template approach to lane detection[ C]//IEEE Intelligent Vehicles' 95. Detroit: [ s. n. ], 1995:54- 59. 被引量:1

共引文献29

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部