期刊文献+

脉冲神经元序列学习方法的影响因素研究 被引量:7

Research on Affect Factors of Spiking Neuron Sequence Learning Method
下载PDF
导出
摘要 远程有监督方法(ReSuMe)通过计算神经元运行时的输出脉冲和输入脉冲的时间差调整突触权值,是目前在理论基础和实际应用上都较出色的脉冲神经元有监督学习方法,但是当期望输出脉冲序列较长时,ReSuMe方法的学习精度较低。为解决该问题,分析影响ReSuMe方法性能的2个主要因素:在线、离线学习方式及学习过程中更新突触权值时输入脉冲的选取。在线学习精度一般高于离线学习,但是学习精度的差异随着参数或者其他设置的不同有较大差别。针对输入脉冲的选取,提出一种新的学习策略以改进ReSuMe方法,该策略在计算权值调整幅度时综合考虑期望输出与实际输出脉冲序列,从而避免增强与减弱权值时输入脉冲出现重叠干扰。实验结果表明,新的学习策略可以有效提高ReSuMe方法的学习精度及其解决实际问题的能力。 Remote Supervised Method(ReSuMe) adjusts the synaptic weights according to the time difference between output and input spiking during neuron runtime. Whether for the theoretical basis or the practical application, ReSuMe method is a kind of relatively excellent supervised learning method for spiking neurons. But when the desired output spriking sequence is long, the learning accuracy of ReSuMe method is relatively low. In order to discusse ReSuMe method more detailed and improve its learning performance, two factors that affect the learning performance of ReSuMe method are studied. The first factor is the offline or online learning model,the other is the choice of the input spiking considered when adjusting the synaptic weights. Online learning accuracy is generally higher than offline learning, but the different of learning precision is big with different parameters or other settings. And a new learning strategy is proposed for the second factor to improve the ReSuMe method, it considers input and output spiking sequence when calculates weight adjustment, avoids the overlap interference of input spiking when increases and decreases weights. Experimental results show that the new strategy can greatly improve the learning accuracy of ReSuMe method under different experiment settings. So it has a strong ability to solve practical problems.
作者 徐彦 杨静
出处 《计算机工程》 CAS CSCD 北大核心 2015年第11期194-201,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61403205) 中央高校基本科研业务费专项基金资助项目(KJQN201549)
关键词 脉冲神经元 远程有监督方法 脉冲序列学习 脉冲神经网络 脉冲反应模型 spiking neuron Remote Supervised Method (ReSuMe) spiking sequence learning spiking neural network Spiking Response Model( SRM )
  • 相关文献

参考文献14

  • 1Gerstner W, Kistler W M. Spiking Neuron Models [ M ]. Cambridge, UK : Cambridge University Press ,2002. 被引量:1
  • 2Rullen R V, Thorpe S J. Rate Coding Versus Temporal Order Coding:What the Retinal Ganglion Cells Tell the Visual Cortex [J]. Neural Computation, 2001,13 ( 6 ) : 1255-1283. 被引量:1
  • 3Maass W. Networks of Spiking Neurons: The Third Generation of Neural Network Models[ J ]. Neural Networks, 1997,10 ( 9 ) : 1659-1671. 被引量:1
  • 4Maass W. Fast Sigmoidal Networks via Spiking Neur- ons[J]. Neural Computation,1997,9(2) :279-304. 被引量:1
  • 5Maass W, Noisy Spiking Neurons with Temporal Coding Have More Computational Power Than Sigmoidal Neurons [ M ]. Cambridge, USA : MIT Press, 1997. 被引量:1
  • 6Legenstein R, Naeger C, Maass W. What Can a Neuron Learn with Spike-timing-dependent Plasticity? [ J]. Neural Computation ,2005,17 ( 11 ) :2337-2382. 被引量:1
  • 7Pfister J P,Toyoizumi T, Barber D, et al. Optimal Spike-timing-dependent Plasticity for Precise Action Potential Firing in Supervised Learning [ J ]. Neural Computation, 2006,18(6) :1318-1348. 被引量:1
  • 8Ponulak F. ReSuMe New Supervised Learning Method for Spiking Neural Networks [ D ]. Pozna, Poland:Poznan University of Technology,2005. 被引量:1
  • 9Bi G Q, Poo M M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type[J]. Journal of Neuroscience, 1998,18 ( 24 ) : 10464-10472. 被引量:1
  • 10Ponulak F, Kasinski A. Supervised Learning in Spikting Neural Networks with Resume: Sequence Learning, Classification and Spike Shifting [ J ]. Neural Com- putation, 2010,22 ( 2 ) : 467-510. 被引量:1

同被引文献23

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部