摘要
In this paper, we study delay-induced firing behavior and transitions in adaptive Newman-Watts networks of thermosensitive neurons with electrical or chemical synapses. It is found that electrical and chemical synapse time delay-induced firing behavior and transitions differ significantly. In the case of electrical synapses, the bursts for a fixed delay involve equal number of spikes in each burst, and for certain time delays the firing can be inhibited. However, in the case of chemical synapses the bursts for a fixed delay involve different numbers of spikes in each burst, and no firing inhibition is observed. It is also shown that larger growth rates of adaptive coupling strength or larger network randomness can enhance the synchronization of bursting in the case of electrical synapses but reduce it in the case of chemical synapses. These results show that electrical and chemical synapses have different effects on delay-induced firing behavior and dynamical evolution. Compared to electrical synapses, chemical synapses might be more beneficial to the generation of firing and abundant firing transitions in adaptive and delayed neuronal networks. These findings can help to better understand different firing behaviors in neuronal networks with electrical and chemical synapses.
In this paper, we study delay-induced firing behavior and transitions in adaptive Newman–Watts networks of thermosensitive neurons with electrical or chemical synapses. It is found that electrical and chemical synapse time delay-induced firing behavior and transitions differ significantly. In the case of electrical synapses, the bursts for a fixed delay involve equal number of spikes in each burst, and for certain time delays the firing can be inhibited. However, in the case of chemical synapses the bursts for a fixed delay involve different numbers of spikes in each burst, and no firing inhibition is observed. It is also shown that larger growth rates of adaptive coupling strength or larger network randomness can enhance the synchronization of bursting in the case of electrical synapses but reduce it in the case of chemical synapses. These results show that electrical and chemical synapses have different effects on delay-induced firing behavior and dynamical evolution. Compared to electrical synapses, chemical synapses might be more beneficial to the generation of firing and abundant firing transitions in adaptive and delayed neuronal networks. These findings can help to better understand different firing behaviors in neuronal networks with electrical and chemical synapses.