期刊文献+

一种基于CR理论的大柔性机翼非线性气动弹性求解方法 被引量:3

A CR theory-based approach for solving nonlinear aeroelasticity of very flexible wings
下载PDF
导出
摘要 大展弦比大柔性机翼在气动载荷的作用下,产生较大的弹性变形,其惯性特性、刚度特性、动气动弹性特性等亦发生较大改变,常规的线性气动弹性分析方法不再适用。基于Co-rotational(CR)理论,推导了机翼变形后的切线刚度矩阵和质量矩阵,建立了考虑几何非线性效应的大柔性机翼结构动力学模型;耦合改进的ONERA非线性非定常气动力模型,提出了一种适用于大柔性机翼的非线性气动弹性求解方法。采用Newmark直接数值积分法及松耦合技术在时域内对气动弹性运动方程进行求解,对所提出的非线性气动弹性求解方法的正确性和精度进行了验证,并研究了大柔性机翼的极限环颤振特性。研究表明:适用于大柔性机翼完整的非线性气动弹性建模需要考虑机翼结构大变形和非定常气动力动态失速等非线性因素;弯曲变形可降低临界极限环颤振速度的15%以上,而前移弹性轴能够有效的提高临界极限环颤振速度;所提出的非线性气动弹性求解方法具有较好的精度和效率,满足大柔性机翼非线性气动弹性的求解需求。 Very flexible wings under aerodynamic loads tend to produce larger deformation,it results in significant changes in inertial and stiffness characteristics,and dynamic aeroelastic features,the linear aeroelastic analysis method is no longer applicable. Here,based on the co-rotational( CR) theory,the tangent stiffness matrix and mass matrix of a wing after deformation were derived,the structural dynamic model of very flexible wings considering geometric nonlinearity was then established. Coupled with ONERA dynamic stall model,an efficient method to solve nonlinear aeroelasticity of very flexible wings was proposed. Using Newmark direct integration method and loose coupled algorithms,a numerical procedure for solving nonlinear aeroelastic dynamic equations was presented,and the efficiency and precision of the method were verified through tests. The results showed that structural and aerodynamic nonlinearities should be considered for complete nonlinear dynamic aeroelastic simulations of very flexible wings; the wing's critical limit cycle oscillation speed decreases 15% or more due to its bending deformation,but it increases through shifting forward the wing's elastic axis; the proposed method has a good precision and efficiency,and meets requirements of nonlinear aeroelastic analysis of very flexible wings.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第19期62-70,共9页 Journal of Vibration and Shock
基金 国家自然科学基金(11202162) 中国博士后科学基金(2014M560803)
关键词 非线性气动弹性 极限环颤振 CR理论 非定常气动力 动态失速 Newmark积分法 nonlinear aeroelasticity limit cycle oscillation CR theory unsteady aerodynamics loads dynamic stall Newmark integration method
  • 相关文献

参考文献18

  • 1Patil M J, Hodges D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behav- ior of high-aspect-ration wings [ J ]. Journal of Fluids and Structures,2004,19:905 - 915. 被引量:1
  • 2Patil M J, Hodges D H, Cesnik C E S. Nonlinearaeroelastici- ty and flight dynamics of high-altitude long-enduranceAircraft [ R]. AIAA -99 - 1470. 被引量:1
  • 3Patil M J, Hodges D H. Flightdynamics of highly flexible fly- ing wings [ J ]. Journal of Aircraft, 2006, 43 ( 6 ) : 1790 - 1798. 被引量:1
  • 4Patil M J, Hodges D J, Cesnik C E S. Limit cycle oscilla- tions in high-aspect-ratio wings [ J ]. Journal of Fluid and Structures,2001,15 : 107 - 132. 被引量:1
  • 5XIE ChangChuan,YANG Chao.Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings[J].Science China(Technological Sciences),2011,54(2):403-411. 被引量:28
  • 6Shams S, Sadr M H, Haddadpeur H. An efficient method for nonlinear aeroelasticy of slender wings [ J ]. Nonlinear Dynam- ics,2012,67:659 - 681. 被引量:1
  • 7周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 8Belytsehko T, Schwer L. Large displacement, transient anal- ysis of space frames [ J ]. International Journal for Numerical Methods in Engineering, 1977, 11:65 - 84. 被引量:1
  • 9Crisfield M A. A consistent Co-rotational formulation for non- linear, three-dimensional, beam element [ J ]. Computer Methods In Applied Mechanics And Engineering, 1990,81: 131 - 150. 被引量:1
  • 10Crisfield M A. Non-linear finite element analysis of solids and structures, Volume 2 : Advanced topics [ M ]. John Wiley & Sons, Chiehester, New York, Weinheim, Brisbane, Singa- pore, Toronto,2000. 被引量:1

二级参考文献37

  • 1AYTLeung,Wu Guorong,Zhong Weifang.NONLINEAR DYNAMIC ANALYSIS OF FLEXIBLE MULTIBODY SYSTEM[J].Acta Mechanica Solida Sinica,2004,17(4):330-336. 被引量:7
  • 2吴国荣,钟伟芳,李美之,梁以德.大运动柔性梁非线性动力响应分析[J].振动与冲击,2005,24(1):1-3. 被引量:15
  • 3Park Y P. Dynamic stability of a free Timoshenko beam under a controlled follower force[J]. Journal of Sound and Vibration, 1987, 113(3): 407 -415. 被引量:1
  • 4Zuo Q H, Schreyer H L. Flutter and divergence instability of non-conservative beams and plates[J]. International Journal of Solids and Structures, 1996, 33 (9): 1355- 1367. 被引量:1
  • 5Como M. Lateral buckling of a cantilever subjected to a transverse force[J]. International Journal of Solids and Structures, 1966, 2(3): 515-523. 被引量:1
  • 6Hodges D H. Lateral-torsional flutter of a deep cantilever loaded by a lateral follower force at the tip[J].Journal of Sound and Vibration, 2001, 247(1): 175-183. 被引量:1
  • 7Feldt W T, Herrmann G, Bending-torsional flutter of a cantilevered wing containing a tip mass and subjected to a transverse follower force[J].Journal of the Franklin In stitute, 1974, 297(6): 467-478. 被引量:1
  • 8Hodges D H, Patil M J, Chae S. Effect of thrust on bending-torsion flutter of wings [J].Journal of Aircraft, 2002, 39(2): 371-376. 被引量:1
  • 9Fazelzadeh S A, Mazidi A, Kalantari H. Bending-torsional flutter of wings with an attached mass subjected to a fol lower force[J]. Journal of Sound and Vibration, 2009 323(1-2): 148-162. 被引量:1
  • 10Xie C C, Leng J Z, Yang C. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing[J]. Shock and Vibration, 2008, 15(3-4): 325 333. 被引量:1

共引文献65

同被引文献39

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部