期刊文献+

基于几何精确梁理论的风力机叶片单元 被引量:7

BEAM FINITE ELEMENT FOR WIND TURBINE BLADE BASED ON GEOMETRICALLY EXACT BEAM THEORY
下载PDF
导出
摘要 为研究大变形带来的非线性特性,基于几何精确梁理论建立一种用于叶片的非线性单元。该叶片单元考虑了材料非线性以及截面偏心的影响。采用Gauss-Lobatto积分和微分求积法离散积分形式的平衡方程,并推导出增量线性方程。用3个标准算例验证单元的正确性。最后,该叶片单元被应用于10 MW风力机的叶片和整机模态分析,准确地获得风力机系统的固有频率和振型。 With the development of the wind energy, wind turbine blades are getting larger and more flexible, which makes the nonlinear dynamic behavior of wind turbine unfold more clear. Nonlinear effect is a relatively new focus area in the wind turbine territory. In order to study nonlinear performance caused by large deformation, the nonlinear unit of blade was built based on geometrically exact beam theory. The effect of nonlinear material and eccentric cross-section on the blade unit was considered. The integration equation of motion was discretized by using Gauss-Lobatto quadrature formula and differential quadrature method, and incremental linear equation was derived. The correctness of unit was verified by three standard examples. Further, the blade unit was used as the blade of 10 MW wind turbine and mode analysis. The natural frequency and vibration shape of wind turbine system was obtained correctly.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第10期2422-2428,共7页 Acta Energiae Solaris Sinica
关键词 风力发电 风力机叶片 大变形 几何非线性 模态分析 wind power wind turbine blade large deformation geometrically nonlinear effect mode analysis
  • 相关文献

参考文献14

  • 1Hodges D H, Dowel1 E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[M]. Washington, D C: NASA, 1974. 被引量:1
  • 2Kallesce B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations [J]. Wind Energy, 2007, 10(3) : 209-230. 被引量:1
  • 3Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation for beam elements: Theory [J]. Journal of Mechanical Design, 2001, 123 (4) : 606-613. 被引量:1
  • 4Reissner E. On one-dimensional large-displacement finite-strain beam theory[J]. Studies in Applied Mathematics, 1973, 52(2) : 87-95. 被引量:1
  • 5Simo J C. A finite strain beam formulation. The three- dimensional dynamic problem. Part l[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 49( 1 ) : 55-70. 被引量:1
  • 6Hodges D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams [J]. AIAA Journal, 2003, 41(6) : 1131-1137. 被引量:1
  • 7Kim T, Hansen A M, Branner K. Development of an anisotropic beam finite element for composite wind turbine blades in multibody system[J]. Renewable Energy, 2013, 59: 172-183. 被引量:1
  • 8Romero I. A comparison of finite elements for nonlinear beams:The absolute nodal coordinate and geometrically exact formulations[J]. Muhibody System Dynamics, 2008, 20(1): 51-68. 被引量:1
  • 9Yu W B, Volovoi V V, Hodges D H, et al. Validation of the variational asymptotic beam sectional analysis[J]. AIAA Journal, 2002, 40(10) : 2105-2112. 被引量:1
  • 10Blasques J P, Stolpe M. Multi-material topology optimization of laminated composite beam cross sections [J]. Composite Structures, 2012, 94 (11) : 3278- 3289. 被引量:1

同被引文献36

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部