期刊文献+

极坐标与圆柱坐标下Fourier-Chebyshev配置点谱方法泊松方程求解器 被引量:4

Fourier-Chebyshev Collocation Spectral Poisson Solvers in Polar and Cylindrical Coordinate Systems
下载PDF
导出
摘要 采用矩阵相乘的Fourier-Chebyshev配置点谱方法求解极坐标与圆柱坐标系下的泊松方程.通常,在极坐标与圆柱坐标系下运用谱方法求解泊松方程会产生奇点问题.为了避免这个问题,分别采用两种方法开发了泊松方程求解器.一种方法是采用Gauss-Radau配置点,从而排除中心点r=0;另一种方法是采用区域转换将半径方向计算域[0,1]转换成[-1,1],采用Gauss-Lobatto配置点,当节点数取奇数时同样避开了中心点r=0.这两种方法均避免了中心处的奇点,且不需构造额外的极条件.针对二维、三维的不同算例进行了比较和验证计算.计算结果证明两个求解器都具有直接、快速、高精度的特性. The Poisson solvers in polar and cylindrical coordinate systems are developed using Fourier-Chebyshev collocation spectral method based on matrix-matrix multiplication. Usually the singularities will appear in the solution to Poisson equation in polar and cylindrical coordinate systems by spectral method. To avoid such a problem, two methods are proposed to solve the Poisson equation. The first is introducing the Gauss-Radau collocation points, thus excluding the singularity at the origin. The second method is transforming the computing interval [0,1] in radial direction into [- 1,1] and then introducing the Gauss-Lobatto collocation points, so as to exclude the singularity at the origin when the number of nodes is odd. And no extra pole conditions are required by both methods to avoid the singularity at the origin. The two methods are compared with each other and verified via 2D and 3D instances separately, and the results indicate that they are direct, fast, and highly accurate.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期241-245,共5页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展规划项目(2006CB601203)
关键词 计算流体力学 极条件 奇点 极坐标 圆柱坐标 Fourier-Chebyshev配置点谱方法 泊松方程 computational fluid dynamics pole condition singularity polar coordinate cylindrical coordinate Fourier-Chebyshev collocation spectral method Poisson equation
  • 相关文献

参考文献13

  • 1Gottlieb D, Orszag S A. Numerical analysis of spectral method: theory and applications[M]. Philadelphia: SIAM, 1977. 被引量:1
  • 2Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral method in fluid dynamics [ M]. Berlin: Spinger Verlag, 1988. 被引量:1
  • 3Peyret R. Spectral methods for incompressible viscous flow [M]. New York, Springer, 2001. 被引量:1
  • 4Braverman E, Israeli M, Averbuch A, et al. A fast 3D Pois,son solver of arbitrary order accuracy [ J ]. Journal of Comput Phys, 1998,144 : 109 - 136. 被引量:1
  • 5Johnston H, Liu J G. Accurate, stable efficient Navier- Stokes solver based on explicit treatment of the pressure term [J ]. Journal of Comput Phys, 2004,199 : 221 - 259. 被引量:1
  • 6Chen H, Su Y, Shizgal B D. A direct spectral collocation Poisson solver in polar and cylindrical coordinates [ J ]. Journal of Comput Phys, 2000,160:453 - 469. 被引量:1
  • 7Shen J. Efficient spectral-Galerkin methods Ⅲ : polar and cylindrical geometries[J ]. SIAM J Sci Comput, 1997, 18:1583 - 1604. 被引量:1
  • 8Zhao S, Yedlin M J. A new iterative Chebyshev spectral method for solving the elliptic equation △ ( σ △ u ) = f [ J ]. Journal of Comput Phys, 1994,113:215- 223. 被引量:1
  • 9Dang-Vu H, Delcarte C. An accurate solution of the Poisson equation by the Chebyshev collocation method[J]. Journal of Comput Phys, 1993 ,104:211 - 220. 被引量:1
  • 10Huang W, Ma H P, Sun W. Convergence analysis of spectral collocation methods for singular differential equation [ J ]. SIAM J Numer Anal, 2003,41:2333 - 2349. 被引量:1

同被引文献31

  • 1麻剑锋,沈新荣,章本照,陈华军.极坐标系下泊松方程的拟谱方法[J].空气动力学学报,2006,24(2):243-245. 被引量:6
  • 2C Canuto, M Y Hussaini, A Quarteroni, et al. Spectral Methods in Fluid Dynamics [M]. New York: Springer- Verlag, 1988. 被引量:1
  • 3A T Patera. A spectral element method for fluid dynamics:laminar flow in a channel expansion[J]. J Comput. Phys, 1984,54 : 468-488. 被引量:1
  • 4G E Karniadakis, S J Sherwin. Spectral/hp Element Methods for CFD I-M]. London: Oxford University Press, 1999. 被引量:1
  • 5J P Boyd, F Yu. Comparing seven spectral methods for interpolation and for solving the poisson equation in a disk : zernike polynomials, logan-sheppridge poly- nomials, chebyshev-fourier series, cylindrical robert functions, bessel-fourier expansions, square-to-disk conformal mapping and radial basis functions[J]. J Comput. Phys, 2011,230 : 1408-1438. 被引量:1
  • 6H Eisen,W Heinrichs,K Witsch. Spectral collocation methods and polar coordinate singularities[J]. J Corn- put. Phys, 1991,96 : 241-257. 被引量:1
  • 7W Z Huang, D M Sloan. Pole condition for singular problems: the pseudospectral approximation [J]. J Comput. Phys, 1993,107: 254-261. 被引量:1
  • 8T Matsushima, P S Marcus. A spectral method for polar coordinates[J]. J Comput. Phys, 1995,120 : 365- 374. 被引量:1
  • 9J Shen. Efficient spectral-galerkin methods III. polar and cylindrical geometries[J]. SlAM J Sci Comput, 1997,18(6) : 1583-1604. 被引量:1
  • 10J Shen. A new fast Chebyshev-Fourier algorithm for Poisson-type equations in polar geometries[J]. Appl Numer Math ,2000,33:183-190. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部