期刊文献+

基于RBF-BP神经网络的煤炭企业物资分类算法

A material classification algorithm based on RBF-BP netural network in coal enterprises
下载PDF
导出
摘要 针对现有煤炭企业在物资管理中存在分类粗放、评价标准主观、计算规模大等问题,为提高煤炭企业中物资分类的效率,提出一种基于RBF-BP神经网络的煤炭企业物资分类算法。根据煤炭物资相关数据,建立算法预测模型,对煤炭物资分类进行预测。实验结果表明,RBF-BP神经网络算法较BP神经网络算法可提高煤炭企业物资分类的准确率,为煤炭企业物资的分类提供了较准确、可靠的方法。 In view of extensive classification,subjective evaluation standard and large calculation existed in material management of coal enterprises,a material classification algorithm based on RBF-BP neural network is proposed to improve the efficiency of material classification in coal enterprises.According to the relevant data of coal material,the algorithm is established to forecast the coal material classification.The experimental results show that compared with BP neural network,RBF-BP neural network prediction can improve the correct rate of the coal enterprise's material classification,and provide a more accurate and reliable method for material classification in coal enterprises.
出处 《桂林电子科技大学学报》 2015年第5期366-370,共5页 Journal of Guilin University of Electronic Technology
基金 陕西省自然科学基金(2011JM8027)
关键词 煤炭企业 RBF-BP神经网络 物资分类 coal enterprises RBP-BP neural network material classification
  • 相关文献

参考文献15

二级参考文献26

  • 1闵惜琳,刘国华.用MATLAB神经网络工具箱开发BP网络应用[J].计算机应用,2001,21(z1):163-164. 被引量:71
  • 2Fu Shunjun, Ruan Qiuqi. A local nontexture image inpainting and denoising based on nonlinear PDEs [C] //7th International Conference on Signal Processing, Beijing, 2004: 1029-1032. 被引量:1
  • 3Shih T K, Chang Rong-chi. Digital inpainting-survey and multilayer image inpainting algorithms [C] //Third International Conference on Information Techology and Applications, Sydney, 2005:15-25. 被引量:1
  • 4GUVENIR H A, EREL E. Multicriteria inventory classification using a genetic algorithm[-J]. European Journal of Operational Research, 1998,105 (2) : 29-37. 被引量:1
  • 5SPECHT D F. Probabilistic neural networks [ J ]. Neural Networks, 1990,3(1) : 109-118. 被引量:1
  • 6PARTOVI F Y, ANANDARAJAN M. Classifying inventory using an artificial neural network approach [J]. Computers and Industrial Engineering,2002,41: 389-404. 被引量:1
  • 7HAYKINS.NeuralNetworksandLearningMachines[M].申富饶,徐烨,郑俊,等译.北京:机械工业出版社,2012. 被引量:1
  • 8张学东,李新通,章浩,王联强.基于模糊重心综合评判的GIS数据产品质量评价研究[J].测绘科学,2007,32(6):49-51. 被引量:6
  • 9N Femia, et al. Optimization of perturb and observe maximum power point tracking method [ J ]. IEEE Transactions on Power E- lectronics, 2005,20 ( 4 ) :963 - 973. 被引量:1
  • 10Y Yusof, et al. Modeling and simulation of maximum power point tracker for photovoltaic system[ C]. Proceedings of National Power and Energy Conference. Kuala Lumpur, Malaysia, 2004:88 - 93. 被引量:1

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部