期刊文献+

基于多变量希尔伯特频域模型的癫痫发作预测 被引量:1

Epileptic Seizure Prediction Based on Multivariate Hilbert Frequency Domain Model
下载PDF
导出
摘要 癫痫发作具有突发性和反复性,对患者生命安全构成巨大威胁。为了对癫痫发作进行有效地预测,提出了多变量希尔伯特频域模型的癫痫发作预测方法。将希尔伯特边际谱、希尔伯特边际谱的变化方向和希尔伯特加权频率组成一个三维特征向量作为多变量希尔伯特频域模型,输入到支持相量机中,实现癫痫的发作预测,最后采用癫痫发作预测特征方法对预测结果进行评估。实验结果表明:采用多变量希尔伯特频域模型分析方法预测δ波和θ波的癫痫发作,癫痫预测范围在30~45 min,患者有足够的时间采取措施应对;癫痫发作周期在5~10 min,缩短患者等待时间,降低焦虑程度;与多种相关方法进行比较,该方法具有较低的错误预报率和较高的预测敏感度。 Epileptic seizure with sudden and repeatability poses a great threat to patient safety.To effectively predict the epileptic seizure, an epileptic seizure prediction method based on multivariate Hilbert frequency domain model was proposed.Hilbert marginal spectrum,Hilbert weighted frequency and Hilbert marginal spectrum change direction were composed to a three dimensional feature vector as multivariate Hilbert frequency domain model,and then put it into support vector machine (SVM)to prediction epileptic seizure.The epileptic seizure prediction method was used to assess the prediction results.Experimental results showed that when the multivariate Hilbert frequency domain model was used to predict epileptic seizure for δrhythm andθrhythm,the seizure prediction horizon was 30 ~45 minutes,so that patients could have enough time to take measures to deal with seizures.The seizure occurrence period was 5 ~10 minutes, thus,the waiting time was shortened and the anxiety of patient was reduced.Compared with a variety of relevant methods,this method has lower false prediction rate and higher prediction sensitivity.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第10期1383-1387,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61071057) 辽宁省博士启动基金资助项目(201134121)
关键词 脑电信号 希尔伯特黄变换 经验模态分解 希尔伯特边际谱 希尔伯特加权频率 electroencephalogram Hilbert-Huang transform empirical mode decomposition Hilbert marginal spectrum Hilbert weighted frequency
  • 相关文献

参考文献10

  • 1Salant Y, Gath I, Henriksen O. Prediction of epileptic seizures from two-channel EEG [ J ]. Medical Biological Engineering Computing, 1998,36 (5) :549 - 556. 被引量:1
  • 2黄璐,王宏.基于约束独立分量分析的脑电特征提取[J].东北大学学报(自然科学版),2014,35(3):419-422. 被引量:5
  • 3Harrison M A, Osorio I, Frei M G, et al. Correlation dimension and integral do not predict epileptic seizures [ J ]. Chaos, 2005,15(3) :33106 -5. 被引量:1
  • 4Yang Z,Gang W, Kuo L. Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition[ J]. Clinical Neurophysiology ,2013,125 ( 1 ) : 1104-1112. 被引量:1
  • 5Rami J O,Enas W A. Seizure classification in EEG signals utilizing Hilbert-Huang transform[ J ]. Biomedical Engineering Online,2011,10 ( 1 ) :38 - 53. 被引量:1
  • 6Varun B,Ram B P. Classification of seizure and nonseizure EEG signals using empirical mode decomposition [ J]. IEEE Transactions on Information Technology in Biomedicine, 2012,16(6) :1135 -1142. 被引量:1
  • 7Sergul A,Dimitrios P, Richsard M L. A note on the phase locking value and its properties [ J]. Neuroimage, 2013, 74 (1) :231 -244. 被引量:1
  • 8Siyi D, Ramesh S, Tom L. EEG classification of imagined syllable rhythm using Hilbert spectrum methods [J]. Journal of Neural Engineering, 2010,7 (4) :046006. 被引量:1
  • 9Maria G K, Mahdi J, Andrea B. Topography of EEG multivariate phase synchronization in early Alzheimer' s disease [ J]. Neurobiology of Aging, 2010,31 ( 1 ) : 1132 - 1144. 被引量:1
  • 10Palus M. Synchronization as adjustment of information rates: detection from bivariate time series[ J]. Physical Review E, 2001,63 ( 1 ) :046211 - 4. 被引量:1

二级参考文献10

  • 1Campanella S, Vigne D D, Komreich C. Greater sensitivity of the P300 component to bimodal stimulation in an event- related potentials oddball task[ J]. Clinical Neurophysiology, 2012,123 (5) :937 - 946. 被引量:1
  • 2Wang S G,James C J. Feature enhancement of P300 based brain computer interface through spatially-constrained ICA [C //2012 /EEE /nternational Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems. Tianjin,2012 : 167 - 170. 被引量:1
  • 3D'Avanzo C, Schiff S, Amodio P, et al. A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 vadabilityE J]. Journal of Neuroscience Methods,2011,198( 1 ) :114 - 124. 被引量:1
  • 4Rakotomamonjy A, Guigue V. BCI competition IU:dataset lI- ensemble of SVMs for BCI P300 speller [ J ]. IEEE Transactions on Biomedical Engineering, 2008, 55 ( 3 ) : i147 - 1154. 被引量:1
  • 5Hyvarinen A, Oja E. Independent component analysis: algo-rithms and applications E J ]. Neural Networks, 2000, 13 ( 4/ 5) :411 -430. 被引量:1
  • 6LuW, Rajapakse J C. Approach and applications of constrained ICA[ J. IEEE Transactions on Neural Networks, 2005,16( 1 ) :203 - 212. 被引量:1
  • 7BlankertzB, Mtiller K R, Curio G, et al. The BCI competition 2003 :progress and perspectives in detection and discrimination of EEG single trials E J ]. IEEE Transactions on Biomedical Engineering,2004,51 (6) : 1044 - 1051. 被引量:1
  • 8Blankertz B, Muller K R, Krusienski D J, et al. The BCI competition III: validating alternative approaches to actual BCI problemsE J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14 (2) : 153 - 159. 被引量:1
  • 9刘冲,赵海滨,李春胜,王宏.基于CSP与SVM算法的运动想象脑电信号分类[J].东北大学学报(自然科学版),2010,31(8):1098-1101. 被引量:49
  • 10刘晓志,冯大伟,杨英华,秦树凯.基于核独立分量分析的盲多用户检测算法[J].东北大学学报(自然科学版),2012,33(6):778-781. 被引量:6

共引文献4

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部