期刊文献+

基于约束独立分量分析的脑电特征提取 被引量:5

EEG Feature Extraction Based on Constrained ICA
下载PDF
导出
摘要 针对脑机接口(brain-computer interface,BCI)系统特征提取较慢的现状,提出基于约束独立分量分析(constrained independent component analysis,cICA)的P300特征提取方法.首先,针对各位P300实验被试,通过EEG图像研究其特有P300时域特性;然后,根据P300特性构建参考信号,并将参考信号与独立分量分析(independent component analysis,ICA)方法结合,基于64导联EEG,提取出与P300相关度最大的独立分量;最后,依据提取出的独立分量构造3维特征向量进行分类.实验采用线性分类器,针对BCI Competition II dataset IIb和BCI Competition III dataset II两组公共数据集进行了验证.结果表明,提出方法在3次叠加平均下识别正确率达67.1%,15次达95.2%,在相同实验条件下,分类时间也较其他方法缩短. Considering the current time-consuming feature extraction of the brain-computer interface, a feature extraction method based on constrained ICA was proposed for P300-BCI. The temporal P300 character of every subject was studied using the EEG image, and then, reference signals were built according to the temporal P300 character. Using the reference signals combined with ICA, the most correlative independent components were extracted based on 64-channel EEG. According to the extracted independent components, 3-dimensional feature vectors were built and put into the linear classifier at last. Two public datasets of BCI Competition Ⅱ and Ⅲ were used to verify the method. The results show that the recognition accuracy can be improved to 67.1% only with three times average, and to 95.2% with fifteen times average. The computation time is also shorter than other methods in the same experimental conditions.
作者 黄璐 王宏
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期419-422,437,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61071057)
关键词 脑机接口 脑电 特征提取 约束独立分量分析 识别正确率 brain-computer interface electroencephalogram ( EEG ) feature extraction constrained ICA recognition accuracy
  • 相关文献

参考文献10

  • 1刘冲,赵海滨,李春胜,王宏.基于CSP与SVM算法的运动想象脑电信号分类[J].东北大学学报(自然科学版),2010,31(8):1098-1101. 被引量:49
  • 2Campanella S, Vigne D D, Komreich C. Greater sensitivity of the P300 component to bimodal stimulation in an event- related potentials oddball task[ J]. Clinical Neurophysiology, 2012,123 (5) :937 - 946. 被引量:1
  • 3Wang S G,James C J. Feature enhancement of P300 based brain computer interface through spatially-constrained ICA [C //2012 /EEE /nternational Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems. Tianjin,2012 : 167 - 170. 被引量:1
  • 4D'Avanzo C, Schiff S, Amodio P, et al. A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 vadabilityE J]. Journal of Neuroscience Methods,2011,198( 1 ) :114 - 124. 被引量:1
  • 5Rakotomamonjy A, Guigue V. BCI competition IU:dataset lI- ensemble of SVMs for BCI P300 speller [ J ]. IEEE Transactions on Biomedical Engineering, 2008, 55 ( 3 ) : i147 - 1154. 被引量:1
  • 6刘晓志,冯大伟,杨英华,秦树凯.基于核独立分量分析的盲多用户检测算法[J].东北大学学报(自然科学版),2012,33(6):778-781. 被引量:6
  • 7Hyvarinen A, Oja E. Independent component analysis: algo-rithms and applications E J ]. Neural Networks, 2000, 13 ( 4/ 5) :411 -430. 被引量:1
  • 8LuW, Rajapakse J C. Approach and applications of constrained ICA[ J. IEEE Transactions on Neural Networks, 2005,16( 1 ) :203 - 212. 被引量:1
  • 9BlankertzB, Mtiller K R, Curio G, et al. The BCI competition 2003 :progress and perspectives in detection and discrimination of EEG single trials E J ]. IEEE Transactions on Biomedical Engineering,2004,51 (6) : 1044 - 1051. 被引量:1
  • 10Blankertz B, Muller K R, Krusienski D J, et al. The BCI competition III: validating alternative approaches to actual BCI problemsE J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14 (2) : 153 - 159. 被引量:1

二级参考文献20

  • 1Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,. 被引量:1
  • 2Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798. 被引量:1
  • 3Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446. 被引量:1
  • 4Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207. 被引量:1
  • 5Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025. 被引量:1
  • 6Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1
  • 7Schlogl A, Keinrath C, Scherer R, et al. Information transfer of an EEG-based brain computer interface[ C]//1st International IEEE/EMBS Conference on Neural Engineering. [S. l. ] : IEEE, 2003 : 164 - 173. 被引量:1
  • 8Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computer interface[J].Biomed Technik, 2002,47(1/2) :3 - 8. 被引量:1
  • 9Hui A L C, Letaief K B. Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links [J]. IEEE Transactions on Communications, 1998,46(3):384 -391. 被引量:1
  • 10Comon P. Independent component analysis-'-a new concept[J]. Signal Processing, 1994,36:287- 314. 被引量:1

共引文献53

同被引文献40

  • 1王楠,杜博,张良培,胡文斌.基于约束独立成分分析的高光谱图像指纹提取[J].华中科技大学学报(自然科学版),2013,41(S2):162-166. 被引量:1
  • 2Xie Shengli Tan Beihai Fu Yuli.Blind signal separation of underdetermined mixtures based on clustering algorithms on planes[J].Progress in Natural Science:Materials International,2007,17(6):670-674. 被引量:2
  • 3Salant Y, Gath I, Henriksen O. Prediction of epileptic seizures from two-channel EEG [ J ]. Medical Biological Engineering Computing, 1998,36 (5) :549 - 556. 被引量:1
  • 4Harrison M A, Osorio I, Frei M G, et al. Correlation dimension and integral do not predict epileptic seizures [ J ]. Chaos, 2005,15(3) :33106 -5. 被引量:1
  • 5Yang Z,Gang W, Kuo L. Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition[ J]. Clinical Neurophysiology ,2013,125 ( 1 ) : 1104-1112. 被引量:1
  • 6Rami J O,Enas W A. Seizure classification in EEG signals utilizing Hilbert-Huang transform[ J ]. Biomedical Engineering Online,2011,10 ( 1 ) :38 - 53. 被引量:1
  • 7Varun B,Ram B P. Classification of seizure and nonseizure EEG signals using empirical mode decomposition [ J]. IEEE Transactions on Information Technology in Biomedicine, 2012,16(6) :1135 -1142. 被引量:1
  • 8Sergul A,Dimitrios P, Richsard M L. A note on the phase locking value and its properties [ J]. Neuroimage, 2013, 74 (1) :231 -244. 被引量:1
  • 9Siyi D, Ramesh S, Tom L. EEG classification of imagined syllable rhythm using Hilbert spectrum methods [J]. Journal of Neural Engineering, 2010,7 (4) :046006. 被引量:1
  • 10Maria G K, Mahdi J, Andrea B. Topography of EEG multivariate phase synchronization in early Alzheimer' s disease [ J]. Neurobiology of Aging, 2010,31 ( 1 ) : 1132 - 1144. 被引量:1

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部