期刊文献+

基于恒定动量矢量的快速大形变微分同胚非刚体标记点集匹配算法 被引量:2

Fast Large Deformation Diffeomorphic Landmarks Matching Algorithm Based on Stationary Momentum
下载PDF
导出
摘要 目前经典的基于微分同胚非刚体变换的标记点匹配算法虽然克服了以往非微分同胚变换方法不能处理大形变非刚体变换的问题,但是普遍存在时空复杂度较高,算法收敛速度较慢以及匹配精确性和变换光滑性不能兼顾等问题.针对这些问题,本文提出了一种新的基于恒定动量矢量的快速大形变微分同胚非刚体标记点集匹配算法,该方法利用拉格朗日坐标系下的恒定动量矢量以及时间依赖的多尺度再生核来构造速度矢量场,然后采用基于规则化控制参数的确定性退火机制来搜索最优动量矢量,从而得到最终的微分同胚变换形变场.最后实验验证了本文所提新算法能使匹配的精确性和变换的光滑性达到较好的平衡兼顾,而且也较大程度地降低了算法的时间复杂度以及空间复杂度. At present,the classical diffeomorphic landmarks matching algorithms can handle large non-rigid deformation problems that cannot be solved by the non-diffeomorphic algorithms,but there are still plenty of problems such as high spatial and temporal complexity,slow convergence speed and impossible to take into account accurate matching and smooth transformation,and so on.To solve these problems,this paper proposes a novel algorithm named as the fast large deformation diffeomorphic landmarks matching based on stationary momentum (SM-FLDDLM).The SM-FLDDLM algorithm estimates the velocity vector fields by means of the Lagrange stationary momentum vector and time-dependent multi-scale reproducing kernels,and then uses the determin-istic annealing mechanism based on regularization control parameters to search for the optimal momentum vectors,resulting in a final diffeomorphic deformation fields.The results of comparative experiments show that the SM-FLDDLM method is not only suitable for the large deformation diffeomorphic non-rigid transformation,with a better balance between accurate matching and smooth defor-mation,but also considerably reduces the time and space complexity.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1714-1722,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61471371)
关键词 大形变微分同胚非刚体变换 标记点集匹配 拉格朗日坐标 恒定动量矢量 多尺度再生核 确定性退火 large deformation diffeomorphic non-rigid transformations landmarks matching Lagrange coordinate stationary momentum multi-scales reproducing kernels deterministic annealing
  • 相关文献

参考文献21

  • 1Mark H. A review of geometric transformations for nonrigid body registration[ J]. IEEE Transactions on Medical Imaging, 2008,27( 1 ) : 111-128. 被引量:1
  • 2Ahmed M, Revanth R G, et al. Biomechanical model as a regis- tration tool for image-guided neurosurgery: Evaluation against B-spline registration [ J]. Annals of Biomedical Engineering, 2013,41 ( 11 ) :2409 - 2425. 被引量:1
  • 3Bran C C, Lepore N, et al. A non-conervative Lagrangian framework for statistical fluid registration - SAFIRA[ J]. IEEE Transactions on Medical Imaging, 201 1, 30(2) : 184 - 202. 被引量:1
  • 4Liu Y, Cheng H D, et al. An effective non-rigid registration ap- proach for ultrasound image based on "Demons" algorithm[J]. Journal of Digital Imaging,2013,26(3) :521 - 529. 被引量:1
  • 5许鸿奎,江铭炎,杨明强.基于改进光流场模型的脑部多模医学图像配准[J].电子学报,2012,40(3):525-529. 被引量:23
  • 6Daniel F, Gutmar F, Hans K, Carl W F. Multi-modal image registration using polynomial expansion and mutual information [A]. The 5th International Workshop on Biomedical Image Registration[ C]. Nashville, USA: IEEE Press,2012.40 - 49. 被引量:1
  • 7Yang X, Zhang X, Liu X, Xiong D. Topology preservation e- valuation of compact-support radial basis functions tbr image registration[J]. Pattern Recognition Letters, 2011,32(8) : 1162 - 1177. 被引量:1
  • 8Park H, Park J S, Seong J K, et al. Cortical surface registration using spherical thin-plate spline with sulcal lines and mean cur- vature as features[ J ]. Journal of Neuroscience Methods, 2012, 206( 1 ) :46 - 53. 被引量:1
  • 9孙冬梅,裘正定.利用薄板样条函数实现非刚性图像匹配算法[J].电子学报,2002,30(8):1104-1107. 被引量:23
  • 10Kohlrausch J, Rohr K. A new class of elastic body splines for nonrigid registration of medical images[ J]. Journal of Mathe- matical Imaging and Vision,2005,23(3) :253 - 280. 被引量:1

二级参考文献23

  • 1Zitova B,Flusser J.Image registration methods:A survey[J].Imag.&Vision Comput.,2003,21(9):772-1000. 被引量:1
  • 2Thirion J P.Image matching as a diffusion process:an analogywith Maxwel’ls Demons[J].Med Imag A-nal,1998,2(3):243-260. 被引量:1
  • 3B K P Horn,B G.Schunck.Determining optical flow[J].Art-ificial Intelligence,1981,17:185-203. 被引量:1
  • 4Zhang Y J.Improving the accuracy of direct histogram specif-ication[J].Electron Lett,1992,28(3):213-214. 被引量:1
  • 5Coltuc D,Bolon P,Chassery JM.Exact histogram specification[J].IEEE Trans Image Processing,2006,15(5):1143-1152. 被引量:1
  • 6Fred L Bookstein.Principal warps:Thin-plate splines and thedecomposition of deformations[J].IEEE Transactions on Pat-tern Analysis and Machine Intelligence,1989,11(6):567-585. 被引量:1
  • 7Evans A C.BrainWeb:Online Simulated Brain Database[EB/OL].http://www.bic.mni.mcgill.ca/brainweb,2006-06-08/2007-03-01. 被引量:1
  • 8J Maintz,MViergever.A survey ofmedical image registration[J].Medical Image Analysis,1998,2(1):1-16. 被引量:1
  • 9Xu H K,Jiang M Y,Yang M Q.A new landmark selectionmethod for non-rigid registration of medical brain images[A].2010 10th International Conference on Signal Process-ing,Vol.II[C].Beijing:IEEE Press,2010.920-923. 被引量:1
  • 10S Pappu,S Gold,et al.A Framework for Non-Rigid Matching and Correspondence [M ].Advance in Neural Information Processing Systems,MIT press,Cambridge:1996,8. 795-801. 被引量:1

共引文献44

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部