期刊文献+

基于SURF和TPS的立体影像密集匹配方法 被引量:9

Densely stereo image matching using SURF and TPS
原文传递
导出
摘要 利用加速鲁棒特性(SURF)算法搜索影像的特征点,基于薄板样条(TPS)建立对应域之间连续和光滑形变变换,用于影像视差的估计,在此基础上提出一种新的立体影像密集匹配方法.首先,基于SURF算法进行特征匹配;然后,利用极线和TPS变换约束选择稳定可靠的同名点,计算影像之间的TPS变换矩阵,估计对应点的位置;最后,基于影像灰度进行密集匹配,并利用极线约束和TPS矩阵删除误匹配点.为保证视差估计的可靠性,利用种子点的外接凸边形对匹配区域进行限定.以人脸三维重建中的影像匹配为例,得到了稳定可靠且密集的同名点. Speeded-up robust features (SURF) has more chance of finding corresponding feature points,which can be used as seed points for densely matching. Thin-plate spline (TPS) transformation can establish a smooth and continuous transformation relationship between corresponding regions which can be used to estimate parallax in matching. Based on the two methods,the paper proposes a novel matching solution. Firstly,a set of reliable seed points was obtained by filtering the corresponding points obtained using SURF with TPS. Then,the corresponding points of each pixel in left image were estimated by the TPS matrix. Thirdly,the dense match can be carried out between two images. Since the seed points and TPS transformation could estimate the coordinates of corresponding point more accurately,so the dense match can performed easily,reliably and quickly. At the same time,the matching region was confined which is the outer protruding polygon surrounded seed points. Finally,the errors corresponding points using TPS and epipolar restriction were deleted. This new method was clarified using some stereo images in human face reconstruction whose similarity is low very much. Using this method,a dense and reliable point cloud can be obtained.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期91-94,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中国博士后科学基金资助项目(20070410282)
关键词 影像匹配 加速鲁棒特性(SURF) 尺度旋转不变特征(SIFT) 薄板样条(TPS) 视差 image matching speeded-up robust features (SURF) scale invariant feature transform (SIFT) thin-plate spline (TPS) parallax
  • 相关文献

参考文献12

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. Int J Cornput Vision, 2002, 47(1-3) : 7-42. 被引量:1
  • 2Zhu Q, Zhao J. Triangulation of well-defined points as a constraint for reliable image matehing[J]. ISPRS J Photogramm, 2005, 71(9): 1 063-1 069. 被引量:1
  • 3明洋..特殊航空影像自动匹配的关键技术研究[D].武汉大学,2009:
  • 4Lowe D. Distinctive image features from scale-invariant keypoints[J]. Int J Comput Vision, 2004, 60 (2) : 91-110. 被引量:1
  • 5张锐娟,张建奇,杨翠.基于SURF的图像配准方法研究[J].红外与激光工程,2009,38(1):160-165. 被引量:119
  • 6Bay H, Ess A, Tuytelaars T. SURF: speeded up robust features[J]. Comput Vis Image Und, 2008, 110 (3) : 346-359. 被引量:1
  • 7Bookstein F. Principal wraps: thin-plate splines and decomposition of deformations [J]. IEEE Trans on PAMI, 1989, 11(6): 567-585. 被引量:1
  • 8孙冬梅,裘正定.利用薄板样条函数实现非刚性图像匹配算法[J].电子学报,2002,30(8):1104-1107. 被引量:23
  • 9Hutton T. Dense surface models of human face[D]. London: Eastman Dental Institute, University College London, 2004. 被引量:1
  • 10张祖勋.数字摄影测量学[M].武汉:武汉大学出版社,2002.. 被引量:56

二级参考文献31

  • 1牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38. 被引量:21
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 4ZITOVA B, FLUSSER J. Image registration methods:a survey [J].Image and Vision Computing ,2003,21:977-1000. 被引量:1
  • 5HARRIS C G, STEPHENS M J. A combined comer and edge detector [C]//Processings Fourth Alvey Vision Conference, Manchester, 1988:147-151. 被引量:1
  • 6SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision, 1997,23(1): 45-78. 被引量:1
  • 7LOWE D G.Object recognition from local scale-invariant features [C]// International Conferenceon Computer Vision, Corfu, Greece Sept, 1999 : 1150-1157. 被引量:1
  • 8MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J].International Journal of Computer Vision, 2004,60(1):63-86. 被引量:1
  • 9LOWED G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004.60(2), 91-110. 被引量:1
  • 10BICEGO M , LAGORIO A, GROSSO E,et al. On the use of SIFT features for face authentication [C]//2006 IEEE Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop,2006:1-7. 被引量:1

共引文献195

同被引文献63

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部